Skip to main content
Log in

Mathematical model of a monolith catalytic incinerator

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A set ofl-dimensional mathematical models were developed to simulate both the steady state and transient performance of monolithic catalytic incinerators for VOC abatement. In modelling transient performance, quasi-steady state gas phase was assumed since transient response time is determined primarily by the thermal inertia of the monolith. Higher inlet gas temperatures and lower gas velocities were predicted to give higher conversion and faster response times. VOC concentration had little influence on the performance within the concentration ranges used. A catalytic incinerator is shown to operate typically under mass transfer limited conditions, and monolith channel density and shape have significant influence on the conversion and monolith heating time. The metallic monolith was predicted to show superior steady state and transient responses due to its lower thermal inertia generated by higher cell density and thinner wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bennett, C. J., Kolaczkowski, S. T. and Thomas, W. J., “Determination of Heterogeneous Reaction Kinetics Rates Under Mass Transfer Controlled Conditions for a Monolith Reactor,”Trans. Instn. Chem. Engrs.,69, Part B, 209 (1991).

    CAS  Google Scholar 

  • Cerkanowicz, A. E., Cole, R. B. and Stevens, J. G., “Catalytic Combustion Modelling: Comparisons with Experimental Data,”Trans. ASME, Ser. A. J. Engng Power,99, 593 (1977).

    CAS  Google Scholar 

  • Cooper, B. J. and Strom, T., Rolles Royce Ltd., Aero-division Project Report No. 197 (1978).

  • Geus, J. W. and van Giezen, J. C, “Monoliths in Catalytic Oxidation,”Catalysis Today,47, 169(1999).

    Article  CAS  Google Scholar 

  • Groppi, G., Belloli, A., Tronconi, E. and Forzatti, P., “Analysis of Multidimensional Models of Monolith Catalysts for Hybrid Combustors,”AIChE Journal,41,2250 (1995).

    Article  CAS  Google Scholar 

  • Groppi, G., Tronconi, E. and Forzatti, P., “Mathematical Models of Catalytic Combustors,”Catal. Rev. Sci. Eng.,41,227 (1999).

    Article  CAS  Google Scholar 

  • Hawthorn, R. D., “Afterburner Catalysts-Effects of Heat and Mass Transfer Between Gas and Catalyst Surface,”AIChE Symp. Ser.,70,428(1974).

    Google Scholar 

  • Hayes, R. E. and Kolaczkowski, S. T., “Mass and Heat Transfer Effects in Catalytic Monolith Reactors,”Chem. Eng. Sci.,49, 3587 (1994).

    Article  Google Scholar 

  • Heck, R. M. and Farrauto, R. J., “Catalytic Air Pollution Control,” Van Nostrand Reinhold (1995).

    Google Scholar 

  • Jahn, R., Snita, D., Kubicek, M. and Marek, M., “3-D Modelling of Monolith Reactors,”Catalysis Today,38,39 (1997).

    Article  CAS  Google Scholar 

  • Jennings, M. S., Krohn, N. E., Berry, R. S., Palazzolo, M. A., Parks, R. M. and Fidler, K. K., “Catalytic Incineration for Control of Volatile Organic Compound Emissions,” Park Ridge, N. J. (1985).

    Google Scholar 

  • Kim, J. S. and Ann, W. S., “A Study on the Catalytic Incineration of Methyl Isobutyl Ketone,”J. of Korean Ind. & Eng. Chemistry,6(4), 690 (1995).

    CAS  Google Scholar 

  • Kolaczkowski, Stan T., “Modelling Catalytic Combustion in Monolith Reactors-Challenges Faced,”Catalysis Today,47, 209 (1999).

    Article  CAS  Google Scholar 

  • Prasad, R., Kennedy, L. and Ruckenstein, E., “A Model for the Transient Behavior of Catalytic Combustors,”Comb. Sci. Tech.,30,59(1983).

    Article  CAS  Google Scholar 

  • Stevens, J. G. and Ziegler, E. N., “Effect of Momentum Transport on Conversion in Adiabatic Catalytic Tubular Reactors,”Chem. Eng. Sci.,32, 385 (1977).

    Article  CAS  Google Scholar 

  • Tien, J. S., “Transient Catalytic Combustor Model,”Comb. Sci. Tech.,26,65 (1981). Trimm, D., “Catalytic Combustion,”Appl. Catal., 7,249 (1983).

    Article  CAS  Google Scholar 

  • Votruba, J., Sinkule, J., Hlavacek, V. and Skrivanek, J., “Heat and Mass Transfer in Monolithic Honeycomb Catalysts-I,”Chem. Eng. Sci.,30, 117(1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wha Seung Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, S.H., Ahn, W.S., Ha, J.M. et al. Mathematical model of a monolith catalytic incinerator. Korean J. Chem. Eng. 16, 778–783 (1999). https://doi.org/10.1007/BF02698351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698351

Key words

Navigation