Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials

Abstract

Chemical sensors1 respond to the presence of a specific analyte in a variety of ways. One of the most convenient is a change in optical properties, and in particular a visually perceptible colour change. Here we report the preparation of a material that changes colour in response to a chemical signal by means of a change in diffraction (rather than absorption) properties. Our material is a crystalline colloidal array2,3,4,5,6,7,8,9,10,11,12 of polymer spheres (roughly 100 nm diameter) polymerized within a hydrogel13,14 that swells and shrinks reversibly in the presence of certain analytes (here metal ions and glucose). The crystalline colloidal array diffracts light at (visible) wavelengths determined by the lattice spacing2,3,4,5,6,7,8,9,10,11,12, which gives rise to an intense colour. The hydrogel contains either a molecular-recognition group that binds the analyte selectively (crown ethers for metal ions), or a molecular-recognition agent that reacts with the analyte selectively. These recognition events cause the gel to swell owing to an increased osmotic pressure, which increases the mean separation between the colloidal spheres and so shifts the Bragg peak of the diffracted light to longer wavelengths. We anticipate that this strategy can be used to prepare ‘intelligent’ materials responsive to a wide range of analytes, including viruses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visible extinction spectra of an acrylamide IPCCA Pb2+ sensor at various concentrations of Pb(CH3COO).
Figure 2: Dependence of the diffracted wavelength of the PCCA sensor on the concentration of cations bound by the crown ether.
Figure 3: Visible extinction spectra showing how diffraction depends on the glucose concentration for the 125-µm-thick PCCA glucose sensor.
Figure 4: Extinction spectra of the PCCA glucose sensor immersed in an aqueous solution of 02 mM glucose with varying O2 concentrations.

Similar content being viewed by others

References

  1. Janata, J. Principles of Chemical Sensors(Plenum, New York, (1989)).

    Book  Google Scholar 

  2. Carlson, R. J. & Asher, S. A. Characterization of optical diffraction and crystal structure in monodisperse polystyrene colloids. Appl. Spectrosc. 38, 297–304 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Asher, S. A. Crystalline narrow band radiation filter.U.S. Patent Nos 4,627,689 and 4,632,517.

  4. Asher, S. A., Flaugh, P. L. & Washinger, G. Crystalline colloidal Bragg diffraction devices: The basis for a new generation of Raman instrumentaiton. Spectroscopy 1, 26–31 (1986).

    CAS  Google Scholar 

  5. Rundquist, P. A., Photinos, P., Jagannathan, S. & Asher, S. A. Dynamical Bragg diffraction from crystalline colloidal arrays. J. Chem. Phys. 91, 4932–4941 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Krieger, I. M. & O'Neill, F. M. Diffraction of light by arrays of colloidal spheres. J. Am. Chem. Soc. 90, 3114–3120 (1968).

    Article  CAS  Google Scholar 

  7. Hiltner, P. A. & Krieger, I. M. Diffraction of light by ordered suspensions. J. Phys. Chem. 73, 2386–2389 (1969).

    Article  CAS  Google Scholar 

  8. Hiltner, P. A., Papir, Y. S., Krieger, I. M. Diffraciton of light by nonaqueous ordered suspensions. J. Phys. Chem. 75, 1881–1886 (1971).

    Article  CAS  Google Scholar 

  9. Clark, N. A., Hurd, A. J. & Ackerson, B. J. Single colloidal crystals. Nature 281, 57–60 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Ackerson, B. J. & Clark, N. A. Shear-induced melting. Phys. Rev. Lett. 46, 123–126 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Aastuen, D. J. W., Clark, N. A., Cotter, L. K. & Ackerson, B. J. Nucleation and growth of colloidal crystals. Phys. Rev. Lett. 57, 1733–1736 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Hurd, A. J., Clark, N. A., Mockler, R. C. & O'Sullivan, W. Lattice dynamics of colloidal crystals. Phys. Rev. A26, 2869–2881 (1982).

    Article  ADS  Google Scholar 

  13. Weissman, J. M., Sunkara, H. B., Tse, A. S. & Asher, S. A. Thermally switchable periodicities and diffraction from novel mesocopically ordered materials. Science 274, 959–960 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Asher, S. A., Holtz, J., Liu, L. & Wu, Z. Self assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays. J. Am. Chem. Soc. 116, 4997–4998 (1994).

    Article  CAS  Google Scholar 

  15. Dusek, K. (ed.) Responsive Gels: Volume Phase Transitions, Advances in Polymer Science 109, (Springer, Berlin, (1993)).

    Google Scholar 

  16. Dusek, K. (ed.) Responsive Gels: Volume Phase Transitions II, Advances in Polymer Science 110(Springer, Berlin, (1993)).

    Google Scholar 

  17. Okano, T. Molecular design of temperature-responsive polymers as intelligent materials. Adv. Polym. Sci. 110, 179–197 (1993).

    Article  CAS  Google Scholar 

  18. Kataoka, K., Miyazaki, H., Okano, T. & Sakurai, Y. Sensitive glucose-induced change of the lower critical solution temperature. Macromolecules 27, 1061–1062 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Irie, M. Stimuli-responsive poly(N-isopropylacrylamide). Photo- and chemical-induced phase transitions. Adv. Polym. Sci. 110, 49–65 (1993).

    Article  CAS  Google Scholar 

  20. Irie, M., Misumi, Y. & Tanaka, T. Stimuli-responsive polymers: Chemical induced reversible phase separation of an aqueous solution of poly(N-isopropylacrylamide) with pendent crown ether groups. Polymer 34, 4531–4535 (1993).

    Article  CAS  Google Scholar 

  21. Flory, J. Principles of Polymer Science(Cornell Univ. Press, Ithaca, (1953)).

    Google Scholar 

  22. Kubota, K., Fujishige, S. & Ando, I. Single-chain transition of poly(N-isopropylacrylamide) in water. J. Phys. Chem. 94, 5154–5158 (1990).

    Article  CAS  Google Scholar 

  23. Fujishige, S., Kubota, K. & Ando, I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J. Phys. Chem. 93, 3311–3313 (1989).

    Article  CAS  Google Scholar 

  24. Schild, H. G. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 17, 163–249 (1992).

    Article  CAS  Google Scholar 

  25. Heskins, M. & Guillet, J. E. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Chem. A2, 1441–1455 (1968).

    Article  Google Scholar 

  26. Tanaka, T. Collapse of gels and the critical endpoint. Phys. Rev. Lett. 40, 820–823 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Khokhlov, A. R. & Kramarenko, E. Yu. Weakly charged polyelectorlytes: collapse induced by extra ionization. Macromolecules 29, 681–685 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Gehrke, S. H. Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels. Adv. Polym. Sci. 110, 81–144 (1993).

    Article  CAS  Google Scholar 

  29. Osada, Y. & Gong, J. Stimuli responsive gels and their application ot chemomechanical systems. Prog. Polym. Sci. 18, 187–226 (1993).

    Article  CAS  Google Scholar 

  30. Kataoka, K., Kyoy, H. & Tsuruta, T. Novel pH-sensitive hydrogels of segmented poly(amine ureas) having a repetitive array of polar and apolar units in the main chain. Macromolecules 28, 3336–3341 (1995).

    Article  ADS  CAS  Google Scholar 

  31. Wang, K. L., Burban, J. H. & Cussler, E. L. Hydrogels as separation agents. Adv. Polym. Sci. 110, 67–79 (1993).

    Article  CAS  Google Scholar 

  32. Gehrke, S. H., Andrews, G. P. & Cussler, E. L. Chemical aspects of gel extraction. Chem. Eng. Sci. 41, 2153–2160 (1986).

    Article  CAS  Google Scholar 

  33. Grimshaw, P. E., Grodzinski, A. J., Yarmush, M. L. & Yarmush, D. M. Dynamical membranes for protein transport: Chemical and electrical control. Chem. Eng. Sci. 44, 827–840 (1989).

    Article  CAS  Google Scholar 

  34. Sheppard, N. F., Lesho, M. J., McNally, P. & Francomacaro, A. S. Microfabricated conductometric pH sensor. Sensors and Actuators B 28, 95–102 (1995).

    Article  CAS  Google Scholar 

  35. Schalkhammer, T. et al. The use of metal-island-coated pH-sensitive swelling polymers for biosensor applications. Sensors and Actuators B 24/25, 166–172 (1995).

    Article  Google Scholar 

  36. McCurley, M. F. An optical biosensor using a fluorescent, swelling sensing element. Biosensors Biolectr. 9, 527–533 (1994).

    Article  CAS  Google Scholar 

  37. Lamb, J. D., Izatt, R. M., Christiansen, J. J. & Eatough, D. J. Thermodynamics and kinetics of cation-macrocycle interactionin Coordination Chemistry of Macrocyclic Compounds(ed. Melson, G. A.) (Plenum, New York, (1979)).

  38. Izatt, R. M. et al. Calorimetric titration study of the interaction of some uni- and bivalent cations with benzo-15-crown-5, 18-crown-6, dibenzo-24-crown-8 and dibenzo-27-crown-9 in methanol–water solvents, at 25 °C and µ = 0.1. J. Am. Chem. Soc. 98, 7626–7630 (1976).

    Article  CAS  Google Scholar 

  39. Kopolow, S., Hogan Esch, T. E. & Smid, J. Poly(vinyl macrocyclic polyethers). Synthesis and cation binding properties. Macromolecules 6, 133–142 (1973).

    Article  ADS  CAS  Google Scholar 

  40. Hirotsu, S., Hirokawa, Y. & Tanaka, T. Volume-phase transitions of ionized N-isopropylacrylamide gels. J. Chem. Phys. 87, 1392–1395 (1987).

    Article  ADS  CAS  Google Scholar 

  41. Zen, J. M. & Huang, S. Y. Square-wave voltammetric determination of lead(II) with a Nafion/2,2 bipyridyl mercury film electrod. Anal. Chim. Acta 296, 77–86 (1994).

    Article  CAS  Google Scholar 

  42. Yokoi, K., Yamaguchi, A., Mizumachi, M. & Koide, T. Direct determination of trace concentrations of lead in fresh water samples by adsorptive cathodic stripping voltammetry of a lead-calcein blue complex. Anal. Chim. Acta 316, 363–369 (1995).

    Article  CAS  Google Scholar 

  43. Dubey, R. K. & Puri, B. K. Simultaneous determination of lead and cadmium in various environmental and biological samples by differential pulse polarography after adsorption of their morpholine-4-carbodithioates onto microcrystalline naphthalene or morpholine-4-dithiocarbamate-CTMAB-napthalene adsorbent. Talanta 42, 65–72 (1995).

    Article  CAS  Google Scholar 

  44. Savage, M. D. et al. Avidin–Biotin Chemistry: A Handbook(Pierce Chemical Company, Rockford IL, (1992)).

    Google Scholar 

  45. Raba, J. & Mottola, H. Glucose oxidase as an analytical reagent. Crit. Rev. Anal. Chem. 25, 1–42 (1995).

    Article  CAS  Google Scholar 

  46. Li, Y. & Tanaka, T. Kinetics of swelling and shrinking of gels. J. Chem. Phys. 92, 1365–1371 (1990).

    Article  ADS  CAS  Google Scholar 

  47. Fillmore, D. J. & Tanaka, T. Kinetics of swelling of gels. J. Chem. Phys. 70, 1214–1218 (1979).

    Article  ADS  Google Scholar 

  48. Peters, A. & Candau, S. J. Kinetics of swelling of polyacrylamide gels. Macromolecules 19, 1952–1955 (1986).

    Article  ADS  CAS  Google Scholar 

  49. Hakiki, A. & Herz, J. E. Astudy of the kinetics of swelling in cylindrical polystyrene gels: Mechanical behavior and final properties after swelling. J. Chem. Phys. 101, 9054–9059 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Munro for assistance with the optical fibre measurements, and S.G.Weber and R. C. Coalson for discussions. This work was supported by the Office of Naval Research, the Air Force Office of Scientific Research and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanford A. Asher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holtz, J., Asher, S. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997). https://doi.org/10.1038/39834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39834

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing