Skip to main content
Log in

Flow behavior of gadolinium doped ceria under different polymeric and hydrodynamic environment for tape casting application

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The present investigation consists of a comprehensive analysis of the rheological properties of tape casting slurry and optimization of its composition through rheological results. Formulation of slurry consists of gadolinium doped ceria (GDC) powder, solvent (ethanol and toluene), dispersant (menhaden fish oil), plasticizer (benzyl butyl phthalate160 and polyethylene glycol 8000), and binder (polyvinyl butyral 98). The slurry exhibits pseudoplastic behavior, which is drastically affected by a minute change in powder content. These changes in the flow properties were traced in terms of shear dependence (m) and fractal dimension (df). of aggregates, along with the trend of growth in aggregate size (R) and its volume fraction (ϕa) in the presence of different additives. These results suggest that the GDC particles tend to form large, rigid aggregates, which show appearance of yield stress even at ϕ>0.06. Furthermore, the addition of polymeric chains in the form of additives causes the steric stabilization of aggregates and formation of their 3-D network structure, which suppresses the sedimentation velocity to zero and provides crack-free and homogeneous green tape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U. Hennings and R. Reimert, Appl. Catal. B Environ., 70, 498 (2007).

    Article  CAS  Google Scholar 

  2. C. Y. Chen and C. L. Liu, Ceram. Int., 37, 2353 (2011).

    Article  CAS  Google Scholar 

  3. A. Arabac and M. F. Öksüzömer, Ceram. Int., 38, 6509 (2012).

    Article  Google Scholar 

  4. L. He, Y. Su, J. Lanhong and S. Shi, J. Rare Earths, 33, 791 (2015).

    Article  CAS  Google Scholar 

  5. C. Son, A. Bhardwaj, J. Hong, J. W. Kim, H. S. Moon, H. S. Noh and S. J. Song, J. Ceram. Process. Res., 18, 858 (2017).

    Google Scholar 

  6. A. Nazir, H. T. T. Le, C. W. Min, A. Kasbe, J. Kim, C. S. Jin and C. J. Park, Nanoscale, 12, 1629 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. L. Mathur, I. H. Kim, A. Bhardwaj, B. Singh, J. Y. Park and S. J. Song, Compos. Part B Eng., 202, 108405 (2020).

    Article  CAS  Google Scholar 

  8. L. Mathur, A. Kumar, I. H. Kim, H. Bae, J. Y. Park and S. J. Song, J. Power Sources, 493, 229696 (2021).

    Article  CAS  Google Scholar 

  9. M. N. Rahaman, Ceramic processing and sintering, CRC Press, Boca Raton (2003).

    Google Scholar 

  10. H. Lee and S. Koo, Korea Aust. Rheol. J., 28, 267 (2016).

    Article  Google Scholar 

  11. D. Kim and S. Koo, Korea Aust. Rheol. J., 30, 67 (2018).

    Article  Google Scholar 

  12. K. Lindqvist and E. Lidén, J. Eur. Ceram. Soc., 17, 359 (1997).

    Article  CAS  Google Scholar 

  13. S. F. Corbin and P. S. Apté, J. Am. Ceram. Soc., 82, 1693 (1999).

    Article  CAS  Google Scholar 

  14. A. Sarikaya and F. Dogan, Ceram. Int., 39, 403 (2013).

    Article  CAS  Google Scholar 

  15. H. Moon, S. D. Kim, S. H. Hyun and H. S. Kim, Int. J. Hydrogen Energy, 33, 1758 (2008).

    Article  CAS  Google Scholar 

  16. S. Ramanathan, K. P. Krishnakumar, P. K. De and S. Banerjee, J. Mater. Sci., 39, 3339 (2004).

    Article  CAS  Google Scholar 

  17. J. Seol, M. Young, E. Jeong, J. Moon and H. Jin, Solid State Ionics, 42, 4546 (2016).

    Google Scholar 

  18. C. Grings Schmidt, K. K. Hansen, K. B. Andersen, Z. Fu, A. Roosen and A. Kaiser, J. Eur. Ceram. Soc., 36, 645 (2016).

    Article  CAS  Google Scholar 

  19. L. Ren, P.-Y. Zeng and J. Dongliang, J. Am. Ceram. Soc., 90, 3001 (2007).

    Article  CAS  Google Scholar 

  20. L. Ren, Y. P. Zeng, and D. Jiang, Solid State Sci., 12, 138 (2010).

    Article  CAS  Google Scholar 

  21. N. Das and H. S. Maiti, J. Membr. Sci., 140, 205 (1998).

    Article  CAS  Google Scholar 

  22. N. Das, S. Bandyopadhyay, D. Chattopadhyay and H. S. Maiti, J. Mater. Sci., 31, 5221 (1996).

    Article  CAS  Google Scholar 

  23. N. Das and H. S. Maiti, J. Phys. Chem. Solids, 70, 1395 (2009).

    Article  CAS  Google Scholar 

  24. D. Hotza and P. Greil, Mater. Sci. Eng. A, 202, 206 (1995).

    Article  Google Scholar 

  25. G. J. Fleer and J. Lyklema, J. Colloid Interface Sci., 46, 1 (1974).

    Article  CAS  Google Scholar 

  26. J. X. Zhang, D. L. Jiang, S. H. Tan, L. H. Gui and M. L. Ruan, J. Mater. Res., 17, 2019 (2002).

    Article  CAS  Google Scholar 

  27. J. Wang and L. Gao, Ceram. Int., 26, 187 (2000).

    Article  CAS  Google Scholar 

  28. L. H. Luo, A. I. Y. Tok and F. Y. C. Boey, Rengong Jingti Xuebao/Journal Synth. Cryst., 37, 188 (2006).

    Google Scholar 

  29. T. Chartier and A. Bruneau, J. Eur. Ceram. Soc., 12, 243 (1993).

    Article  CAS  Google Scholar 

  30. L. P. Meier, L. Urech and L. J. Gauckler, J. Eur. Ceram. Soc., 24, 3753 (2004).

    Article  CAS  Google Scholar 

  31. B. Lee and S. Koo, Powder Technol., 266, 16 (2014).

    Article  CAS  Google Scholar 

  32. J. Cho and S. Koo, J. Ind. Eng. Chem., 27, 218 (2015).

    Article  CAS  Google Scholar 

  33. J. Hong, C. Balamurugan, H.-N. Im, S.-Y. Jeon, Y.-S. Yoo and S.-J. Song, J. Electrochem. Soc., 165, F132 (2018).

    Article  CAS  Google Scholar 

  34. I. M. Krieger and T. J. Dougherty, Trans. Soc. Rheol., 3, 137 (1959).

    Article  CAS  Google Scholar 

  35. N. Casson, Rheology of disperse systems, New York, NY (1959).

  36. T. L. Smith and C. A. Bruce, J. Colloid Interface Sci., 72, 13 (1979).

    Article  CAS  Google Scholar 

  37. A. A. Potanin, J. Colloid Interface Sci., 157, 399 (1993).

    Article  CAS  Google Scholar 

  38. D. Quemada, Rheol. Acta, 16, 82 (1977).

    Article  Google Scholar 

  39. N. Willenbacher and K. Georgieva, Prod. Des. Eng. Formul. Gels Pastes, 1 (2013).

  40. F. J. Galindo-Rosales, F. J. Rubio-Hernández and J. F. Velázquez-Navarro, Rheol. Acta, 48, 699 (2009).

    Article  CAS  Google Scholar 

  41. S. R. Raghavan and S. A. Khan, J. Colloid Interface Sci., 185, 57 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. G. O. Medowski and R. D. Sutch, Doctor Blade Process in F.F.Y., 9th ed., Ceramic fabrication processes, Acadamic Press, New York, NY (1976).

    Google Scholar 

  43. C. W. Nies and G. L. Messing, J. Am. Ceram. Soc., 67, 301 (1984).

    Article  CAS  Google Scholar 

  44. J. Jeon and S. Koo, J. Magn. Magn. Mater., 324, 424 (2012).

    Article  CAS  Google Scholar 

  45. S. Koo, J. Ind. Eng. Chem., 14, 679 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20213030040110) and National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2018R1 A5A 1025224).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Young Park or Sun-Ju Song.

Ethics declarations

There is no conflict of interest.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2022_1271_MOESM1_ESM.pdf

Flow behavior of gadolinium doped ceria under different polymeric and hydrodynamic environment for tape casting application

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, L., Bae, H., Namgung, Y. et al. Flow behavior of gadolinium doped ceria under different polymeric and hydrodynamic environment for tape casting application. Korean J. Chem. Eng. 39, 2991–3002 (2022). https://doi.org/10.1007/s11814-022-1271-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1271-4

Keywords

Navigation