Skip to main content

Advertisement

Log in

Response surface analysis of energy balance and optimum condition for torrefaction of corn straw

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Corn straw has potential as a biofuel, and is generated in large amounts globally. However, this potential remains underutilized, and torrefaction is one of the processes that can be implemented to improve the energy grade of this biomass. In this study, three process parameters (temperature, heating rate, residence time) were investigated using a response surface method to optimize the torrefaction process of corn straw. At 242.26 °C, a 60 min residence time, and 6.28 °C/min heating rate, the mass yield and higher heating value (HHV) reached their maximum values. Temperature was the most important factor influencing torrefaction, followed by residence time and then heating rate. The gas and liquid by-products were measured by mass spectrometry and mass spectrometry-gas chromatography, and the heat demand of torrefaction was measured by thermogravimetric analysis-differential scanning calorimetry. The HHV of the by-products changed little before 240 °C but increased considerably as the temperature further increased. The HHV at 242 °C was 1,273 kJ/kg. When the heat loss was 50%, 242 °C was the critical point of energy balance, and after that the torrefaction process was energy self-sufficient. These findings provide data to support the establishment of semi-industrial or industrial corn straw torrefaction devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Manzano-Agugliaro, A. Alcayde, F. G. Montoya, A. Zapata-Sierra and C. Gil, Energy Rev., 18, 134 (2013).

    Google Scholar 

  2. H. H. Bui, K.-Q. Tran and W. H. Chen, Bioresour. Technol., 199, 362 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. A. Trubetskaya, J. J. Leahy, E. Yazhenskikh, M. Müller, P. Layden, R. Johnson, K. Stahl and R. F. D. Monaghan, Energy (Oxford), 171, 853 (2019).

    Article  CAS  Google Scholar 

  4. J. Wannapeera and N. Worasuwannarak, J. Anal. Appl. Pyrolysis, 96, 173 (2012).

    Article  CAS  Google Scholar 

  5. H. Moayedi, B. Aghel, M. M. Abdullahi, H. Nguyen and A. Rashid, J. Cleaner Production, 237, 117851 (2019).

    Article  CAS  Google Scholar 

  6. R. A. Sheldon, Green Chem., 16, 95 (2014).

    Article  Google Scholar 

  7. S. N. Naik, V. V. Goud, P. K. Rout and A. K. Dalai, Renew. Sustain. Energy Rev., 14, 578 (2010).

    Article  CAS  Google Scholar 

  8. J. Park, J. Meng, K. H. Lim, O. J. Rojas and S. Park, J. Anal. Appl. Pyrolysis, 100, 199 (2013).

    Article  CAS  Google Scholar 

  9. S. N. Naik, V. V. Goud, P. K. Rout and A. K. Dalai, Renew. Sustain Energy Rev., 14, 578 (2010).

    Article  CAS  Google Scholar 

  10. J. Deng, G. Wang, J. Kuang, Y. Zhang and Y. Luo, J. Anal. Appl. Pyrolysis, 86, 331 (2009).

    Article  CAS  Google Scholar 

  11. P. Basu, A. K. Sadhukhan, P. Gupta, S. Rao, A. Dhungana and B. Acharya, Bioresour. Technol., 159, 215 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. K. Q. Tran, X. Luo, G. Seisenbaeva and R. Jirjis, Appl. Energy, 112, 539 (2013).

    Article  Google Scholar 

  13. W.H. Chen, K. M. Lu and C. M. Tsai, Appl. Energy, 100, 318 (2012).

    Article  CAS  Google Scholar 

  14. W. H. Chen, H. C. Hsu, K. M. Lu, W. J. Lee and T. C. Lin, Energy, 36, 3012 (2011).

    Article  CAS  Google Scholar 

  15. L. J. R. Nunes, J. C. O. Matias and J. P. S. Catalão, Energy Rev., 40, 153 (2014).

    CAS  Google Scholar 

  16. W. H. Chen and P. C. Kuo, Energy (Oxford), 36, 803 (2011).

    Article  CAS  Google Scholar 

  17. W. H. Chen, S.H. Liu, T.T. Juang, C.M. Tsai and Y.Q. Zhuang, Appl. Energy, 160, 829 (2015).

    Article  CAS  Google Scholar 

  18. H. Pawlak-Kruczek, K. Krochmalny, K. Mosckki, J. Zgóra, M. Czerep, M. Ostrycharczyk and Ł Niedźwiecki, Inżynieria i ochrona środowiska, 20, 457 (2017).

    CAS  Google Scholar 

  19. M. H. Sulaiman, Y. Uemura and M. T. Azizan, Procedia Eng., 148, 573 (2016).

    Article  Google Scholar 

  20. B. S. Chiou, D. Valenzuela-Medina, C. Bilbao-Sainz, A. K. Klamczynski, R. J. Avena-Bustillos, R. R. Milczarek, W. X. Du, G. M. Glenn and W. J. Orts, Bioresour. Technol., 177, 58 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. H. Li, X. Liu, R. Legros, X.T. Bi, C. Jim Lim and S. Sokhansanj, Appl. Energy, 93, 680 (2012).

    Article  CAS  Google Scholar 

  22. Y. Liu, E. Rokni, R. Yang, X. Ren, R. Sun and Y. A. Levendis, Fuel, 285, 119044 (2021).

    Article  CAS  Google Scholar 

  23. S. Zhang, Y. Su, Y. Xiong and H. Zhang, Fuel, 262, 116667 (2020).

    Article  CAS  Google Scholar 

  24. O. Kutlu and G. Kocar, Int. J. Energy Res., 42, 4746 (2018).

    Article  CAS  Google Scholar 

  25. S. Singh, J. P. Chakraborty and M. K. Mondal, Energy (Oxford), 186, 115865 (2019).

    Article  CAS  Google Scholar 

  26. D. A. Granados, H. I. Velasquez and F. Chejne, Energy (Oxford), 74, 181 (2014).

    Article  CAS  Google Scholar 

  27. R. B. Bates and A. F. Ghoniem, Bioresour. Technol, 134, 331 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. R. A. Dos Reis Ferreira, C. Da Silva Meireles, R. M. N. Assunção and R. Reis Soares, J. Therm. Anal. Calorim., 132, 1535 (2018).

    Article  CAS  Google Scholar 

  29. R. K. Singh, K. Jena, J. P. Chakraborty and A. Sarkar, Int. J. Hydrogen Energy, 45, 18922 (2020).

    Article  CAS  Google Scholar 

  30. A. Ohliger, M. Förster and R. Kneer, Fuel, 104, 607 (2013).

    Article  CAS  Google Scholar 

  31. D. Medic, M. Darr, A. Shah, B. Potter and J. Zimmerman, Fuel, 91, 147 (2012).

    Article  CAS  Google Scholar 

  32. P. Bergman and A. R. Boersma (2005) [https://www.researchgate.net/publication/204978559].

  33. M. Mohadesi, B. Aghel, M. Maleki and A. Ansari, Fuel, 273, 117736 (2020).

    Article  CAS  Google Scholar 

  34. B. Aghel, M. Mohadesi and S. Sahraei, Chem. Eng. Technol., 41, 598 (2018).

    Article  CAS  Google Scholar 

  35. B. Aghel, M. Mohadesi, A. Ansari and M. Maleki, Renewable Energy, 142, 207 (2019).

    Article  CAS  Google Scholar 

  36. L. E. Arteaga-Pérez, C. Segura, V. Bustamante-García, O. Cápiro and R. Jiménez, Energy (Oxford), 93, 1731 (2015).

    Article  CAS  Google Scholar 

  37. S. Chang, Z. Zhao, A. Zheng, F. He, Z. Huang and H. Li, Energy Fuels, 26, 7009 (2012).

    Article  CAS  Google Scholar 

  38. L. E. Arteaga-Pérez, H. Grandón, M. Flores, C. Segura and S.S. Kelley, Bioresour. Technol., 238, 194 (2017).

    Article  PubMed  CAS  Google Scholar 

  39. G. J. Wang, Y. H. Luo, D. Jian, J. H. Kuang and Y. L. Zhang, Chinese Sci. Bull., 56, 1442 (2011).

    Article  CAS  Google Scholar 

  40. P. T. Williams and N. Nugranad, Energy, 25, 493 (2000).

    Article  CAS  Google Scholar 

  41. M. Irfan, Q. Chen, Y. Yue, R. Pang, Q. Lin, X. Zhao and H. Chen, Bioresour. Technol., 211, 457 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. J. Wannapeera, B. Fungtammasan and N. Worasuwannarak, J. Anal. Appl. Pyrolysis, 92, 99 (2011).

    Article  CAS  Google Scholar 

  43. B. M. Esteves and H. M. Pereira, Bioresources, 4, 370 (2009).

    Article  CAS  Google Scholar 

  44. B. Esteves, A. V. Marques, I. Domingos and H. Pereira, Wood Sci. Technol., 42, 369 (2008).

    Article  CAS  Google Scholar 

  45. M. M. Gonzalez-Pena and M. Hale, Holzforschung, 63, 385 (2009).

    CAS  Google Scholar 

  46. T. Melkior, C. Barthomeuf and M. Bardet, Fuel, 187, 250 (2017).

    Article  CAS  Google Scholar 

  47. M. R. Pelaez-Samaniego, V. Yadama, E. Lowell and R. Espinoza-Herrera, Wood Sci. Technol., 47, 1285 (2013).

    Article  CAS  Google Scholar 

  48. J. H. Peng, X.T. Bi, S. Sokhansanj and C. J. Lim, Fuel, 111, 411 (2013).

    Article  CAS  Google Scholar 

  49. C.M.S. Da Silva, A.D.C.O. Carneiro, B.R. Vital, C.G. Figueiró, L. D. F. Fialho, M. A. de Magalhães, A. G. Carvalho and W.L. Candido, Renew. Sustain. Energy Rev., 82, 2426 (2018).

    Article  Google Scholar 

  50. J. Ribeiro, R. Godina, J. Matias and L. Nunes, Sustain (Basel, Switzerland), 10, 2323 (2018).

    CAS  Google Scholar 

  51. I. Milosavljevic, V. Oja and E. M. Suuberg, Ind. Eng. Chem. Res., 35, 653 (1996).

    Article  CAS  Google Scholar 

  52. L. J. Gallego, S. Cardona, E. Martínez and L. A. Rios, Waste and Biomass Valorization, 11, 2273 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by the National Natural Science Funds for Young Scholars of China (No. 51806033) and Jilin Provincial Science and Technology Development Program (No. 20190201096JC; No. 20190303025SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baizhong Sun.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Guo, T., Che, D. et al. Response surface analysis of energy balance and optimum condition for torrefaction of corn straw. Korean J. Chem. Eng. 39, 1287–1298 (2022). https://doi.org/10.1007/s11814-021-1030-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1030-y

Keywords

Navigation