Skip to main content
Log in

Highly elastic aerogel derived from spent coffee grounds as oil removal adsorbent

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In the face of increasing environmental pollution, aerogels have emerged as valuable materials for potential oil/water separation. However, many of the currently developed aerogels have unsatisfactory compressibility, high cost and a single hydrophobic modification method, which limits larger-scale application. In this work, a type of aerogel with compressible, inexpensive, and fully biodegradable features was designed via a novel zirconium chloride modification strategy. Typically, a series of aerogels (HCSW-1, HCSW-2, and HCSW-3) were readily prepared from a mixture of spent coffee grounds, waste paper and sodium alginate. The prepared aerogels exhibited good elasticity, low density (0.024 g cm−3), high porosity (98.3%), efficient oil/water separation and good oil uptake (23-44 times of its weight). In addition, the as-prepared aerogels can be easily recycled several times, thus meeting the demand of actual oil/water separation. Such prominent results provide a new perspective for the development of efficient hydrophobic aerogels in the treatment of offshore oil spills and industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Rostami, O. Abessi and H. Amini-Rad, Mar. Pollut. Bull., 138, 302 (2019).

    Article  CAS  Google Scholar 

  2. E. M. Soliman, S. A. Ahmed and A. A. Fadl, J. Environ. Health Sci. Eng., 18, 79 (2020).

    Article  CAS  Google Scholar 

  3. Y. Wang, K. Lee, D. Liu, J. Guo, Q. Han, X. Liu and J. Zhang, Environ. Pollut, 263, 114343 (2020).

    Article  CAS  Google Scholar 

  4. Y. Li, X. Liu, W. Cai, Y. Cao, Y. Sun and F. Tan, Korean J. Chem. Eng., 35, 1119 (2018).

    Article  CAS  Google Scholar 

  5. G.-L. Zhuang, S.-Y. Wu, Y.-C. Lo, Y.-C. Chen, K.-L. Tung and H.-H. Tseng, J. Membr. Sci., 605, 118091 (2020).

    Article  CAS  Google Scholar 

  6. F. Hashemi, H. Hashemi, M. Shahbazi, M. Dehghani, M. Hoseini and A. Shafeie, Water Resour. Ind., 23, 100123 (2020).

    Article  Google Scholar 

  7. H. Ozgun, M. E. Ersahin, S. Erdem, B. Atay, B. Kose, R. Kaya, M. Altinbas, S. Sayili, P. Hoshan, D. Atay, E. Eren, C. Kinaci and I. Koyuncu, J. Chem. Technol. Biotechnol., 88, 1576 (2013).

    Article  CAS  Google Scholar 

  8. M. O. Adebajo, R. L. Frost, J. T. Kloprogge, O. Carmody and S. Kokot, J. Porous Mater., 10, 159 (2003).

    Article  CAS  Google Scholar 

  9. M. Ma, Y. Chen, X. Zhao, F. Tan, Y. Wang, Y. Cao and W. Cai, J. Saudi Chem. Soc., 24, 915 (2020).

    Article  CAS  Google Scholar 

  10. L. Wang, C. Shi, L. Wang, L. Pan, X. Zhang and J.-J. Zou, Nanoscale, 12, 4790 (2020).

    Article  CAS  Google Scholar 

  11. A. Bayat, S. F. Aghamiri, A. Moheb and G. R. Vakili-Nezhaad, Chem. Eng. Technol., 28, 1525 (2005).

    Article  CAS  Google Scholar 

  12. S. J. Teichner, G. A. Nicolaon, M. A. Vicarini and G. E. E. Gardes, Adv. Colloid Interface Sci., 5, 245 (1976).

    Article  CAS  Google Scholar 

  13. R. Yogapriya and K. R. D. Kasibhatta, Acs Appl. Nano Mater., 3, 5816 (2020).

    Article  CAS  Google Scholar 

  14. J. Kim, H. Kim, G. Baek and C. Lee, Waste Manage., 60, 322 (2017).

    Article  CAS  Google Scholar 

  15. A. Arulrajah, T.-A. Kua, C. Suksiripattanapong, S. Horpibulsuk and J. S. Shen, J. Clean. Prod., 162, 1491 (2017).

    Article  CAS  Google Scholar 

  16. X. Yue, T. Zhang, D. Yang, F. Qiu and Z. Li, J. Clean. Prod., 199, 411 (2018).

    Article  CAS  Google Scholar 

  17. L. Zhang, H. Chen, J. Sun and J. Shen, Chem. Mater., 19, 948 (2007).

    Article  CAS  Google Scholar 

  18. Z. Xu, H. Zhou, X. Jiang, J. Li and F. Huang, Iet Nanobiotechnol., 11, 929 (2017).

    Article  Google Scholar 

  19. L. Li, T. Hu, H. Sun, J. Zhang and A. Wang, Acs Appl. Mater. Interfaces, 9, 18001 (2017).

    Article  CAS  Google Scholar 

  20. C. Wang, G. H. He, J. L. Cao, L. H. Fan, W. Q. Cai and Y. H. Yin, Acs Appl. Polym. Mater., 2, 1124 (2020).

    Article  CAS  Google Scholar 

  21. J. Yang, Y. Xia, P. Xu and B. Chen, Cellulose, 25, 3533 (2018).

    Article  CAS  Google Scholar 

  22. P. S. Brown, O. D. L. A. Atkinson and J. P. S. Badyal, Acs Appl. Mater. Interfaces, 6, 7504 (2014).

    Article  CAS  Google Scholar 

  23. L. Zhou and Z. Xu, J. Hazard. Mater., 388, 121804 (2020).

    Article  CAS  Google Scholar 

  24. A. E. Atabani, S. Shobana, M. N. Mohammed, G. Uguz, G. Kumar, S. Arvindnarayan, M. Aslam and A. a. H. Al-Muhtaseb, Fuel, 244, 419 (2019).

    Article  CAS  Google Scholar 

  25. N. Belhouchat, H. Zaghouane-Boudiaf and C. Viseras, Appl. Clay Sci., 135, 9 (2017).

    Article  CAS  Google Scholar 

  26. Y. Wang, Y. Feng and J. Yao, J. Colloid Interface Sci., 533, 182 (2019).

    Article  CAS  Google Scholar 

  27. S.-J. Kim, J.-B. Moon, G.-H. Kim and C.-S. Ha, Polym. Test., 27, 801 (2008).

    Article  CAS  Google Scholar 

  28. Q. Cheng, D. Ye, C. Chang and L. Zhang, J. Membr. Sci., 525, 1 (2017).

    Article  CAS  Google Scholar 

  29. H. Sehaqui, Q. Zhou and L. A. Berglund, Compos. Sci. Technol., 71, 1593 (2011).

    Article  CAS  Google Scholar 

  30. M. Fumagalli, D. Ouhab, S.M. Boisseau and L. Heux, Biomacromolecules, 14, 3246 (2013).

    Article  CAS  Google Scholar 

  31. L. Zhou, S. Zhai, Y. Chen and Z. Xu, Polymers, 11, 712 (2019).

    Article  CAS  Google Scholar 

  32. J. T. Korhonen, M. Kettunen, R. H. A. Ras and O. Ikkala, Acs Appl. Mater. Interfaces, 3, 1813 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Instrument Analysis center of Dalian Polytechnic University is gratefully acknowledged for all the equipment employed. This research was supported by Natural Science Foundation of Liaoning Province (2019-ZD-0923), National Key Research and Development Program of China (No. 2019YFC0605003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengzhi Tan or Fan Yang.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Cai, W., Zhang, M. et al. Highly elastic aerogel derived from spent coffee grounds as oil removal adsorbent. Korean J. Chem. Eng. 39, 1517–1523 (2022). https://doi.org/10.1007/s11814-021-1052-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1052-5

Keywords

Navigation