Skip to main content
Log in

Fifth Generation Communication Performance of Poly(ether ketone ketone)/Modified Montmorillonite Substrate

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Quaternary ammonium salt modified montmorillonite (QASMMT) nanoplatelets were well dispersed in poly(ether ketone ketone) (PEKK) polymers to make pleasing fifth generation (5G) substrates. Substantially smaller dielectric properties and linear thermal expansion coefficient (LCTE) were found for each PEKKaxQASMMTy film series filled with small and appropriate QASMMT loadings. The dielectric constant (εr) and dielectric loss (tan δ) values acquired for each PEKKaxQASMMTy film series reduced to a lowest value as QASMMT loadings approached 3 wt%. Satisfactory εr (2.59, 2.71, and 2.80 at 1 MHz), tan δ (0.0032, 0.0038, and 0.0042 at 1 MHz) and LCTE (∼36.8×10−6/°C, 38.8×10−6/°C and 40.5×10−6/°C) for 5G communication were acquired for PEKKax QASMMT3 films filled with only 3 wt% optimum loading of QASMMT nano-platelets. In the meantime, the onset degradation temperatures acquired for each PEKKax QASMMTy film series increased substantially with increasing QASMMT loadings. All free volume properties, such as, the radius of the free-volume-cavity or free-volume-cavity numbers per unit volume evaluated for every PEKKax QASMMTy film sequence enlarged to a largest value, as QASMMT loadings approached an appropriate value of 3 wt%. Substantial smaller εr and tan δ were acquired for PEKKa and PEKKax QASMMTy with larger free volume properties. Possible reasons accounting for these substantially diminished dielectric and LCTE properties of PEKKax QASMMTy films are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Wang, N. Wen, G.-Y. Zhou, S.-X. Wang, W. He, X.-H. Su, and Y.-S. Hu, Appl. Surf. Sci., 422, 738 (2017).

    Article  CAS  Google Scholar 

  2. I.-H. Tseng, T.-T. Hsieh, C.-H. Lin, M.-H. Tsai, and D.-L. Ma, Prog. Org. Coat., 124, 92 (2018).

    Article  CAS  Google Scholar 

  3. J.-G. Andrews, S. Buzzi, W. Choi, V.-H. Stephen, A. Lozano, C.-K. Anthony, and J.-Z. Zhang, IEEE J. Sel. Area. Comm., 32, 1065 (2014).

    Article  Google Scholar 

  4. R. Pethig, Dielectrophoresis: Theory, Methodology and Biological Applications, John wiley and sons, Hoboken, 2017.

    Book  Google Scholar 

  5. J.-G. Zhou, X.-L. Zhu, L. Zhang, W.-M. Qiao, and L.-C. Ling, Carbon, 110, 519 (2016).

    Article  Google Scholar 

  6. K.-C. Yung, J. Wang, and T.-M. Yue, Adv. Compos. Mater., 15, 371 (2006).

    Article  CAS  Google Scholar 

  7. W. Chen, F.-L. Liu, M. Ji, and S.-Y. Yang, High Perform. Polym., 29, 501 (2016).

    Article  Google Scholar 

  8. C. Griswold, W.-M. Cross, L. Kjerengtroen, and J.-J. Kellar, J. Adhes. Sci. Technol., 19, 279 (2005).

    Article  CAS  Google Scholar 

  9. X. Xu, T. Yang, Y. Yu, W.-H. Xu, Y.-C. Ding, and H.-Q. Hou, J. Mater. Sci: Mater. Electron., 28, 12683 (2017).

    CAS  Google Scholar 

  10. P. Gonon, A. Sylvestre, J. Appl. Phys., 92, 4584 (2002).

    Article  CAS  Google Scholar 

  11. G. Subodh, M.-V. Manjusha, J. Philip, and M.-T. Sebastian, J. Appl. Polym. Sci., 108, 1716 (2008).

    Article  CAS  Google Scholar 

  12. H.-L. Sun, R.-S. Cooke, W.-D. Bates, and K.-J. Wynne, Polymer, 46, 8872 (2005).

    Article  CAS  Google Scholar 

  13. W. Kim, M.-K. Lee, Mater. Lett., 63, 933 (2009).

    Article  CAS  Google Scholar 

  14. K. Tsuchiya, H. Ishii, Y. Shibasaki, S. Ando, and M. Ueda, Macromolecules, 37, 4794 (2004).

    Article  CAS  Google Scholar 

  15. M. Hasegawa, Y. Tsujimura, K. Koseki, and T. Miyazaki, Polym. J., 40, 56 (2007).

    Article  Google Scholar 

  16. L. Han, X.-F. Gao, IEEE Trans. Electron Devices, 63, 3707 (2016).

    Article  Google Scholar 

  17. C. Wang, N. Wen, and G. Zhou, J. Mol. Liq., 422, 738 (2017).

    CAS  Google Scholar 

  18. H. Shaman, S. Almorqi, and A. Alamoudi, IETE J. Res., 62, 63 (2015).

    Article  Google Scholar 

  19. Y. Li, W. Shi, Z. Sun, Y. Pan, X.-M. Sheng, and J.-Y. Li, J. Macromol. Sci., Part B: Phys., 52, 1064 (2013).

    Article  CAS  Google Scholar 

  20. K.-C. Yung, H. Liem, H. Choy, and T.-M. Yue, J. Appl. Polym. Sci., 116, 2348 (2010).

    Article  CAS  Google Scholar 

  21. H. Mavoori, S. Jin, JOM, 50, 70 (1998).

    CAS  Google Scholar 

  22. Y. Seo, J. Appl. Polym. Sci., 64, 359 (2015).

    Article  Google Scholar 

  23. T.-Z. Redhwan, A.-U. Alam, M. Catalano, L.-H. Wang, M.-J. Kim, and Y.-M. Haddara, M.-R.-H. Matiar, Mater. Lett., 212, 214 (2017).

    Article  Google Scholar 

  24. H. Wang, J. Wang, T.-T. Feng, N. Ramdani, Y. Li, X.-D. Xu, and W.-B. Liu, J. Therm. Anal. Calorim., 119, 1913 (2015).

    Article  CAS  Google Scholar 

  25. T. Choupin, L. Debertrand, B. Fayolle, G. Régnier, C. Paris, J. Cinquin, and B. Brulé, Polym. Cryst., 2, 1 (2019).

    Google Scholar 

  26. M. Ana, M. Naffakh, C. Marco, G. Ellis, A. Marián, and F. Gómez, Prog. Mater. Sci., 57, 1106 (2012).

    Article  Google Scholar 

  27. Y. Gao, X. Jian, Y. Xuan, S. Xiang, P. Liang, and M.-D. Guiver, J. Polym. Sci., Part A: Polym. Chem., 40, 3449 (2010).

    Article  Google Scholar 

  28. J. Xie, W.-Y. Peng, G. Li, and J.-M. Jiang, Polym. Bull., 67, 45 (2011).

    Article  CAS  Google Scholar 

  29. J. Pan, K. Li, J. Li, T. Hsu, and Q. Wang, Appl. Phys. Lett., 95, 797 (2009).

    Google Scholar 

  30. B.-J. Liu, G.-B. Wang, W. Hu, Y.-H. Jin, C.-H. Chen, Z.-H. Jiang, W.-J. Zhang, Z.-W. Wu, and Y. Wei, J. Polym. Sci., Part A: Polym. Chem., 40, 3392 (2010).

    Article  Google Scholar 

  31. B.-J. Liu, W. Hu, C.-H. Chen, Z.-H. Jiang, W.-J. Zhang, Z.-W. Wu, and T. Matsumoto, Polymer, 45, 3241 (2004).

    Article  CAS  Google Scholar 

  32. Z. Geng, M.-X. Huo, J.-X. Mu, S.-L. Zhang, Y.-N. Lu, J.-H. Luan, P.-F. Huo, Y.-L. Du, and G.-B. Wang, J. Mater. Chem. C, 13, 1094 (2014).

    Article  Google Scholar 

  33. J. M. Hao, Y. F. Wei, X. S. Li, and J. X. Mu, J. Appl. Polym. Sci., 15, 135 (2018).

    Google Scholar 

  34. D. M. Pan, G. K. Zhou, X. D. Zhi, T. Hsu, and J. T. Yeh, J. Electron. Mater. 2021, accepted for pubblication and in press.

  35. Y.-N. Lu, S.-L. Zhang, Z. Geng, K. Zhu, M.-H. Zhang, R.-Q. Na, and G.-B. Wang, New J. Chem., 41, 3089 (2017).

    Article  CAS  Google Scholar 

  36. H. Zhou, D.-Y. Wei, Y. Fan, H. Chen, Y.-S. Yang, J.-J. Yu, and L.-G. Jin, J. Mater. Sci. Eng. B, 203, 13 (2016).

    Article  Google Scholar 

  37. Y.-S. Ye, Y.-C. Yen, W.-Y. Chen, C.-C. Cheng, and F.-C. Chang, J. Polym. Sci., Part A: Polym. Chem., 46, 6296 (2010).

    Article  Google Scholar 

  38. Y.-N. Lu, S.-L. Zhang, Z. Geng, Y.-L. Du, K. Zhu, Y.-G. Li, and G.-B. Wang, Adv. Mater., 6, 72999 (2016).

    CAS  Google Scholar 

  39. Y.-H. Zhang, S.-G. Lu, Y.-Q. Li, Z.-M. Dang, J.-H. Xin, S.-Y. Fu, G.-T. Li, R.-R. Guo, and L.-F. Li, Adv. Mater., 17, 1056 (2005).

    Article  CAS  Google Scholar 

  40. Z.-M. Dang, L.-J. Ma, J.-W. Zha, S.-H. Yao, D. Xie, Q. Chen, and X. Duan, J. Appl. Phys., 105, 1769 (2009).

    Article  Google Scholar 

  41. Z. Geng, S.-L. Zhang, J.-X. Mu, X. Jiang, P.-F. Huo, Y.-N. Lu, J.-S. Luan, and G.-B. Wang, J. Appl. Polym. Sci., 129, 3219 (2013).

    Article  CAS  Google Scholar 

  42. Q. Lin, S.-A. Cohen, L. Gignac, B. Herbst, D. Klaus, E. Simonyi, J. Hedrick, J. Warlaumont, H.-J. Lee, and W.-L. Wu, J. Polym. Sci., Part B: Polym. Phys., 45, 1482 (2010).

    Article  Google Scholar 

  43. J.-J. Lin and X.-D. Wang, Polym. J. (London, U. K.), 48, 318 (2007).

    Article  CAS  Google Scholar 

  44. J.-I. Hong, P. Winberg, and L.-S. Schadler, Mater. Lett., 59, 473 (2005).

    Article  CAS  Google Scholar 

  45. C. Wang, T. Wang, and Q. Wang, eXPRESS Polym. Lett., 7, 667 (2013).

    Article  CAS  Google Scholar 

  46. N. Kivilcim, T. Segkin, and S. Koeytepe, J. Porous Mater., 20, 709 (2013).

    Article  CAS  Google Scholar 

  47. Y.-J. Lee, J.-M. Huang, S.-W. Kuo, J.-S. Lu, and F.-C. Chang, Polymer, 46, 173 (2005).

    Article  CAS  Google Scholar 

  48. C.-Y. Wang, W.-T. Chen, and C. Xu, Chin. J. Polym. Sci., 34, 1363 (2016).

    Article  CAS  Google Scholar 

  49. Y.-W. Huang, X.-N. Wei, L.-L. Liu, H.-T. Yu, and J.-X. Yang, Mater. Lett., 232, 86 (2018).

    Article  CAS  Google Scholar 

  50. L.-L. Liu, Y.-W. Yuan, H.-T. Huang, and J.-X. Yu, Phys. Chem. Chem. Phys., 19, 1 (2017).

    Article  Google Scholar 

  51. S. Singha, M.-J. Thomas, IEEE Trans. Dielectr. Electr. Insul., 15, 12 (2008).

    Article  CAS  Google Scholar 

  52. S. Singha, M.-J. Thomas, IEEE Trans. Dielectr. Electr. Insul., 15, 2 (2008).

    Article  CAS  Google Scholar 

  53. Y. Feng, C.-H. Wang, and S.-X. Liu, Mater. Lett., 185, 491 (2016).

    Article  CAS  Google Scholar 

  54. W. Zhao, Y. Xu, and C. Song, e-Polym., 19, 181 (2019).

    Article  CAS  Google Scholar 

  55. B.-Y. Jin, G.-F. Zhang, J.-Z. Lian, Q.-H. Zhang, X.-L. Zhang, and F.-Q. Chen, J. Mater. Chem. A, 1, 17 (2019).

    Google Scholar 

  56. D. Yang, Y.-F. Ni, X.-X. Kong, D.-H. Gao, Y. Wang, T.-T. Hu, and L.-Q. Zhang, Compos. Sci. Technol., 177, 18 (2019).

    Article  CAS  Google Scholar 

  57. Y.-K. Zhu, Y.-J. Zhu, X.-Y. Huang, J. Chen, Q. Li, J.-L. He, and P.-K. Jiang, Adv. Energy Mater., 9, 36 (2019).

    Article  Google Scholar 

  58. N. Kivilcim and T. SeÁkin, Mater. Sci.: Indian J., 8, 25 (2019).

    Google Scholar 

  59. H.-W. Wang, K.-C. Chang, H.-C. Chu, S.-J. Liou, and J.-M. Yeh, J. Appl. Polym. Sci., 92, 2402 (2004).

    Article  CAS  Google Scholar 

  60. G.-L. Wu, Y.-H. Cheng, K.-K. Wang, and Y.-Q. Wang, J Mater Sci: Mater Electron., 27, 5592 (2016).

    CAS  Google Scholar 

  61. T. Hsu, Y. F. Wang, and S. H. Allen, Polymics Ltd, US Patent 0113688A1 (2009).

  62. Q. M. Sun, Y. F. Wang, Orima Ltd, CN Patent, 101812170A (2010).

  63. Y. F. Wang, T. Hsu, and S. H. Allen, Polymics Ltd, CN Patent 102924898A (2015).

  64. M. Okaji, N. Yamada, H. Kato, and K. Nara, Bull. NRLM, 46, 263 (1999).

    Google Scholar 

  65. S.-J. Tao, J. Chem. Phys., 57, 4507 (1972).

    Article  Google Scholar 

  66. Q. Deng, C.-S. Sundar, and Y.-C. Jean, J. Phys. Chem., 96, 492 (1992).

    Article  CAS  Google Scholar 

  67. Y.-Y. Wang, H. Nakanishi, and Y.-C. Jean, J. Polym. Sci., Part A: Polym. Chem., 28, 1431 (1990).

    Article  CAS  Google Scholar 

  68. H.-A. Mckinstry, Am. Mineral., 50, 212 (1990).

    Google Scholar 

  69. L.-B. Fitaroni, J. Lima, and S.-A. Cruz, Polym. Degrad. Stab., 111, 102 (2015).

    Article  CAS  Google Scholar 

  70. J. Golebiewski and A. Galeski, Compos. Sci. Technol., 67, 3442 (2007).

    Article  CAS  Google Scholar 

  71. R. Kotsilkova, V. Petkova, and Y. Pelovski, J. Therm. Anal. Calorim., 64, 591 (2001).

    Article  CAS  Google Scholar 

  72. N.-K. Davood, M. Shorafa, and M. Omid, Afr. J. Agric. Res., 7, 170 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-taut Yeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G.K., Zhi, X.D., Pan, D.M. et al. Fifth Generation Communication Performance of Poly(ether ketone ketone)/Modified Montmorillonite Substrate. Macromol. Res. 30, 107–115 (2022). https://doi.org/10.1007/s13233-022-0009-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-022-0009-9

Keywords

Navigation