Skip to main content
Log in

The simultaneous removal of sulfur dioxide and nitrogen dioxide by the limestone slurry with addition of organic acid additives

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study investigates the effects of organic acid on the simultaneous absorption of SO2 and NO2 in the packed column. Organic acids, i.e., formic acid, acetic acid, and propionic acid, were used as additives. In the case of the absence of additives, when SO2 and NO2 were simultaneously absorbed into the limestone slurry, both SO2 and NO2 contributed to increasing the mutual absorption efficiency. In the simultaneous absorption of SO2 and NO2 with addition of additives, the SO2 removal efficiency appeared in the order of formic acid<no addition<propionic acid<acetic acid. Acetic acid has a superior buffer capacity and intermediate hydrophobic interaction, resulting in the highest SO2 absorption efficiency. In the slurry with the addition of acetic acid and propionic acid, the reactions of absorbed SO2 and NO2 predominantly took place; thus, the SO 2−4 /SO 2−3 ratio was greater than 1. In terms of formic acid, the slurry pH was maintained at approximately 4.0, which departs from the appropriate range, attributed to the small pKa value, showing a negative effect on SO2 and NO2 removal. In the slurry with formic acid added, the SO2 predominantly reacted with formic acid; hence, the SO 2−4 /SO 2−3 ratio was less than 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Shao, Q. Ma, Z. Wang, H. Tang, Y. He, Y. Zhu and K. Cen, Fuel, 247, 1 (2019).

    Article  CAS  Google Scholar 

  2. Y. Sun, Y. Meng, X. Guo, T. Zhu, H. Liu and W. Li, J. Mater. Cycles Waste Manag., 18, 618 (2016).

    Article  CAS  Google Scholar 

  3. J. Liu, Appl. Mech. Mater., 675–677, 422 (2014).

    Google Scholar 

  4. J. W. Kim, APJB, 9, 67 (2018).

    Google Scholar 

  5. N. Tang, Y. Liu, H. Wang, L. Xiao and Z. Wu, Chem. Eng. J., 160, 145 (2010).

    Article  CAS  Google Scholar 

  6. C. Zheng, C. Xu, Y. Zhang, J. Zhang, X. Gao, Z. Luo and K. Cen, Appl. Energy, 129, 187 (2014).

    Article  CAS  Google Scholar 

  7. C. H. Shen and G. T. Rochelle, Environ. Sci. Technol., 32, 1994 (1998).

    Article  CAS  Google Scholar 

  8. R. Ji, J. Wang, W. Xu, X. Liu, T. Zhu, C. Yan and J. Song, Ind. Eng. Chem. Res., 57, 14440 (2018).

    Article  CAS  Google Scholar 

  9. B. Wang, H. Su and S. Yao, Process. Saf. Environ. Prot., 133, 216 (2020).

    Article  CAS  Google Scholar 

  10. Z. Li, C. Xie, J. Lv and R. Zhai, J. Environ. Sci., 67, 89 (2018).

    Article  Google Scholar 

  11. C. N. Buchardt, J. E. Johnsson and S. Kiil, Fuel, 85, 725 (2006).

    Article  CAS  Google Scholar 

  12. P. Cordoba, Fuel, 144, 274 (2015).

    Article  CAS  Google Scholar 

  13. M. A. Hanif, N. Lbrahim and A. A. Jalil, Environ. Sci. Pollut. Res., 27, 27515 (2020).

    Article  CAS  Google Scholar 

  14. R. Feng, Z. Sun, W. Zhang, H. Huang, H. Hu, L. Zhang and H. Xie, IOP Conf. Ser.: Earth and Environ. Sci., 121, 032025 (2018).

    Article  Google Scholar 

  15. H. S. Kim, Y. I. Yoon, H. K. Lee and S. H. Kim, J. Korean Ind. Eng. Chem., 13, 468 (2002).

    CAS  Google Scholar 

  16. Z. Wang, X. Zhang, Z. Zhou, W-Y. Chen, J. Zhou and K. Cen, Energy Fuels, 26, 5583 (2012).

    Article  CAS  Google Scholar 

  17. S.-Y. Liu and W.-D. Xiao, Chem. Eng. Technol., 29, 1167 (2006).

    Article  CAS  Google Scholar 

  18. L. Lv, J. Yang, Z. Shen, Y. Zhou and J. Lu, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 2649 (2016).

    Article  CAS  Google Scholar 

  19. M. A. Siddiqi, J. Petersen and K. Lucas, Ind. Eng. Chem. Res., 40, 2116 (2001).

    Article  CAS  Google Scholar 

  20. J. Yang, G. Hu and H. Gao, Chem. Eng. J., 288, 724 (2016).

    Article  CAS  Google Scholar 

  21. L. Shengyu, X. Wende, L. Pei and Y. Zhixang, Clean, 36, 482 (2008).

    Google Scholar 

  22. P. Atkins, J. de Paula and D. Smith, Elements of physical chemistry. 6th Ed., Oxford University Press (2012).

  23. W. Lidong, M. Yongliang, Z. Wendi, L. Qiangwei, Z. Yi and Z. Zhanchao, J. Hazard. Mater., 258–259, 61 (2013).

    Article  Google Scholar 

  24. C. D. Cooper and F. C. Alley, Air pollution control: A design approach, 3th Ed. Prospect Heights: Waveland Press (2002).

  25. Y. Sun, X. Hong, T. Zhu, X. Guo and D. Xie, Appl. Sci., 7, 377 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTLE) (20193410100240, Development of Simultaneous Reduction technology of SOx and NOx in wet flue gas desulfurization system).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, J.E., Lee, CY. The simultaneous removal of sulfur dioxide and nitrogen dioxide by the limestone slurry with addition of organic acid additives. Korean J. Chem. Eng. 38, 2064–2071 (2021). https://doi.org/10.1007/s11814-021-0850-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0850-0

Keywords

Navigation