Skip to main content
Log in

Influence of different parameters on total fluoride concentration evaluation in ex-situ chemical degradation of nafion based membrane

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The impact of different parameters on the chemical degradation of the Nafion polymer electrolyte membrane was investigated in detail under different concentrations of Fenton solution. As a consequence of chemical degradation, the performance and durability of the perfluorosulfonic acid-based electrolyte membrane in fuel cells was studied. Quantitative estimation of fluoride emitted after chemical degradation of the electrolyte membrane is done by an ex-situ fluoride emission rate-test using a potentiometric with an ion-selective electrode. The concentration of fluoride ions is easily affected by several external factors, such as total ionic strength, pH, temperature, and stirring speed, which causes many errors while reporting the fluoride concentration. Furthermore, the micromorphology of recast Nafion membranes before and after FER rest was thoroughly examined by scanning electron microscope (SEM) and X-ray photoelectric spectroscopy. Here, we report the influence of several external parameters over total fluoride concentration during the estimation of fluoride concentration for the proper correlation of the rate of chemical degradation in polymer electrolytes. This systematic study is beneficial for removing errors while measuring fluoride concentration and removing the discrepancy present in FER results reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho and X. C. Adroher, Appl. Energy, 88, 981 (2011).

    Article  CAS  Google Scholar 

  2. J. Garche and L. Jörissen, Electrochem. Soc. Interface, 24, 39 (2015).

    Article  Google Scholar 

  3. T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti and A. G. Olabi, Int. J. Hydrogen Energy, 41, 16509 (2016).

    Article  CAS  Google Scholar 

  4. L. Mathur, I. H. Kim, A. Bhardwaj, B. Singh, J. Y. Park and S. J. Song, Compos. Part B Eng., 202, 108405 (2020).

    Article  CAS  Google Scholar 

  5. A. Kumar, J. Hong, Y. Yun, A. Bhardwaj and S.-J. Song, J. Mater. Chem. A, 8, 26023 (2020).

    Article  CAS  Google Scholar 

  6. A. Sadeghi Alavijeh, M. A. Goulet, R. M. H. Khorasany, J. Ghataurah, C. Lim, M. Lauritzen, E. Kjeang, G. G. Wang and R. K. N. D. Rajapakse, Fuel Cells, 15, 204 (2015).

    Article  CAS  Google Scholar 

  7. A. A. Shah, T. R. Ralph and F. C. Walsh, J. Electrochem. Soc., 156, B465 (2009).

    Article  CAS  Google Scholar 

  8. T. Xie and C. A. Hayden, Polymer (Guildf), 48, 5497 (2007).

    Article  CAS  Google Scholar 

  9. T. Sugawara, N. Kawashima and T. N. Murakami, J. Power Sources, 196, 2615 (2011).

    Article  CAS  Google Scholar 

  10. A. P. Young, J. Stumper, S. Knights and E. Gyenge, J. Electrochem. Soc., 157, B425 (2010).

    Article  CAS  Google Scholar 

  11. J. Qiao, M. Saito, K. Hayamizu and T. Okada, J. Electrochem. Soc., 153, A967 (2006).

    Article  CAS  Google Scholar 

  12. L. Gubler, S. M. Dockheer and W. H. Koppenol, J. Electrochem. Soc., 158, B755 (2011).

    Article  CAS  Google Scholar 

  13. L. Gubler and W. H. Koppenol, J. Electrochem. Soc., 159, B211 (2011).

    Article  Google Scholar 

  14. N. Ohguri, A. Y. Nosaka and Y. Nosaka, Electrochem. Solid-State Lett., 12, 94 (2009).

    Article  Google Scholar 

  15. I. Y. Park, B. K. Hong, J. J. Ko, A. Kumar, S. J. Song and J. Hong, US Pat. US 11,024,865B2, 1 (2021).

  16. F. J. Vidal-Iglesias, J. Solla-Gullón, A. Rodes, E. Herrero and A. Aldaz, J. Chem. Educ., 89, 936 (2012).

    Article  CAS  Google Scholar 

  17. A. Ohma, S. Yamamoto and K. Shinohara, J. Power Sources, 182, 39 (2008).

    Article  CAS  Google Scholar 

  18. D. Recherche, D. Grenoble and D. Cinetique, J. Fluor. Chem., 9, 483 (1977).

    Article  Google Scholar 

  19. P. K. Malik and S. K. Saha, Sep. Purif. Technol., 31, 241 (2003).

    Article  CAS  Google Scholar 

  20. C. Chen, G. Levitin, D. W. Hess and T. F. Fuller, J. Power Sources, 169, 288 (2007).

    Article  CAS  Google Scholar 

  21. C. Yin, Z. Wang, Y. Luo, J. Li, Y. Zhou, X. Zhang, H. Zhang, P. Fang and C. He, J. Phys. Chem. Solids, 120, 71 (2018).

    Article  CAS  Google Scholar 

  22. C. Chen and T. F. Fuller, Polym. Degrad. Stab., 94, 1436 (2009).

    Article  CAS  Google Scholar 

  23. J. E. Hensley, J. D. Way, S. F. Dec and K. D. Abney, J. Membr. Sci., 298, 190 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Hyundai Motor Group (R-203157.0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Ju Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Yun, Y., Hong, J. et al. Influence of different parameters on total fluoride concentration evaluation in ex-situ chemical degradation of nafion based membrane. Korean J. Chem. Eng. 38, 2057–2063 (2021). https://doi.org/10.1007/s11814-021-0911-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0911-4

Keywords

Navigation