Skip to main content
Log in

Enhancing the dielectric properties of compatibilized high-density polyethylene/calcium carbonate nanocomposites using high-density polyethylene-g-maleic anhydride

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

High-density polyethylene (HDPE) and nanoparticles of calcium carbonate (NCC) have been mixed via melt blending technique using different ratios of NCC as nanofiller and high-density polyethylene-g-maleic anhydride (HDPE-g-MA) as a compatibilizer. The combined effect of NCC as well as HDPE-g-MA concentrations on the breakdown strength and dielectric spectroscopy performance of HDPE was investigated. According to the American Society for Testing and Materials (ASTM) standard, the ac breakdown voltage of such nanocomposites was measured at constant 500 V/s ramp. The ac breakdown voltage was enhanced by 8.2% for HDPE/ 2wt% NCC and reached 21% in the presence of 1 wt% HDPE-g-MA which increases the efficiency of NCC dispersion. The surface morphology of synthesized HDPE/NCC and HDPE/NCC/HDPE-g-MA nanocomposites was characterized by field-emission scanning electron microscopy (FE-SEM). FE-SEM images showed an enhanced dispersion of NCC that may be due to good adhesion between NCC and HDPE under the compatibilization effect of HDPE-g-MA. Fourier-transform infrared (FTIR) analysis showed chemical interaction between HDPE-g-MA and stearic acid on the surface of NCC and physical entanglement among HDPE and HDPE-g-MA. Dielectric constant (ε′) and tangent loss (tan δ) were measured under different applied frequency values from 1 kHz to 1 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhanga C, Wanga D, Hea J, Lianga T, Hub G, Dang Z (2014) Synthesis and dielectric properties of novel liquid crystalline triblock copolymers with cyanobiphenyl moieties and poly (n-butyl acrylate) segments. Polym Adv Technol 25(9):920–926

    Article  Google Scholar 

  2. Khanam PN, AlMaadeed MAA (2015) Processing and characterization of polyethylene-based composites. Adv Manuf: Polym Compos Sci 1(2):63–79

    Google Scholar 

  3. Ramkumar R, Sugumaran PC (2019) Investigation on the electrothermal properties of nanocomposite HDPE. J Nanomater 10:1–9

    Article  Google Scholar 

  4. Golla BR, Tummala M, Akhil PS, James AR (2018) Novel high-density polyethylene-niobium pentoxide dielectric materials. Polym Compos 40:749–757

    Article  Google Scholar 

  5. Ahmed Dabbak S, Illias H, Ang B, Abdul Latiff N, Makmud M (2018) Electrical properties of polyethylene/polypropylene compounds for high-voltage insulation. Energies 11(6):1448

    Article  Google Scholar 

  6. Ohlan A, Singh K, Chandra A, Dhawan SK (2014) Microwave absorption behavior of core − shell structured poly (3, 4-hylenedioxy thiophene) − barium ferrite nanocomposites. ACS Appl Mater Interfaces 2(3):927–933

    Article  Google Scholar 

  7. Zhu J, Wei S, Ryu J, Sun L, Luo Z, Guo Z (2010) Magnetic epoxy resin nanocomposites reinforced with core − shell structured Fe@ FeO nanoparticles: fabrication and property analysis. ACS Appl Mater Interfaces 2(7):2100–2107

    Article  CAS  Google Scholar 

  8. Mu S, Wu D, Wang Y, Wu Z, Yang X, Yang W (2009) Fabrication of nickel oxide nanocomposite layer on a flexible polyimide substrate via ion exchange technique. ACS Appl Mater Interfaces 2(1):111–118

    Article  Google Scholar 

  9. Zhu J, Wei S, Li Y, Sun L, Haldolaarachchige N, Young DP, Southworth C, Khasanov A, Luo Z, Guo Z (2011) Surfactant-free synthesized magnetic polypropylene nanocomposites: rheological, electrical, magnetic, and thermal properties. Macromolecules 44(11):4382–4391

    Article  CAS  Google Scholar 

  10. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20(23):4937–4948

    Article  CAS  Google Scholar 

  11. Guo Z, Kim TY, Lei K, Pereira T, Sugar JG, Hahn HT (2008) Strengthening and thermal stabilization of polyurethane nanocomposites with silicon carbide nanoparticles by a surface-initiated-polymerization approach. Compos Sci Technol 68(1):164–170

    Article  CAS  Google Scholar 

  12. Badr Y, Mahmoud MA (2006) Enhancement of the optical properties of poly vinyl alcohol by doping with silver nanoparticles. J Appl Polym Sci 99(6):3608–3614

    Article  CAS  Google Scholar 

  13. Pan Z, Yao L, Zhai J, Shen B, Wang H (2017) Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Compos Sci Technol 147:30–38

    Article  CAS  Google Scholar 

  14. Tanaka T, Matsunawa A, Ohki Y, Kozako M, Kohtoh M, Okabe S (2006) Treeing phenomenon in epoxy/alumina nanocomposite and interpretation by a multi-core model. IEEJ Trans Fund Mater 126(11):1128–1135

    Article  Google Scholar 

  15. Amin M, Ali M (2015) Polymer nanocomposites for high voltage outdoor insulation applications. Rev Adv Mater Sci 40:276–294

    CAS  Google Scholar 

  16. Akovali G, Akman MA (1997) Mechanical properties of plasma surface-modified calcium carbonate-polypropylene composites. Polym Int 42:195–202

    Article  CAS  Google Scholar 

  17. Mansour SA, Elsad RA, Izzularab MA (2018) Dielectric spectroscopic analysis of polyvinyl chloride nanocomposites loaded with Fe2O3 nanocrystals. Polym Adv Technol 29(9):2477–2485

    Article  CAS  Google Scholar 

  18. Mansour SA, Elsad RA, Izzularab MA (2016) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. Polym Res 23(5):978–985

    Article  Google Scholar 

  19. Mansour SA, Elsad RA, Izzularab MA (2016) Dielectric investigation of high density polyethylene loaded by ZnO nanoparticles synthesized by sol–gel route. J Sol-Gel Sci Technol 80(2):333–341

    Article  CAS  Google Scholar 

  20. Abdel-Gawad NMK, Dein AZE, Mansour D-EA, Ahmed HM, Darwish MMF, Lehtonen M (2017) Enhancement of dielectric and mechanical properties of polyvinyl chloride nanocomposites using functionalized TiO2 nanoparticles. IEEE Trans Dielectr Electr Insul 24(6):3490–3499

    Article  CAS  Google Scholar 

  21. Liu D, Pourrahimi AM, Olsson RT, Hedenqvist MS, Gedde UW (2015) Influence of nanoparticle surface treatment on particle dispersion and interfacial adhesion in low-density polyethylene/aluminium oxide nano-composites. Eur Polym J 66:67–77

    Article  CAS  Google Scholar 

  22. Toor A, Pisano AP (2015) Gold nanoparticle/PVDF polymercomposite with improved particle dispersion. In: IEEE 15th international conference on on nanotechnology. Rome, pp 706–709

  23. Rosen MJ, Kunjappu JT (2004) Surfactants and interfacial phenomena. Wiley, New Jersey

    Book  Google Scholar 

  24. Ahn SH, Kim SH, Lee SG (2004) Surface-modified silica nanoparticle—reinforced poly(ethylene 2,6-naphthalate). J Appl Polym Sci 94(2):812–818

    Article  CAS  Google Scholar 

  25. Habashy MM, Abd-Elhady AM, Elsad RA, Izzularab MA (2019) Performance of PVC/SiO2 nanocomposites under thermal ageing. Appl Nanosci 10:1–9

    Google Scholar 

  26. Elsad RA, Mansour SA, Izzularab MA (2019) Loading different sizes of titania nanoparticles into transformer oil: a study on the dielectric behavior. J Sol-Gel Sci Technol 10:1–8

    Google Scholar 

  27. Shah KS, Jain RC, Shrinet V, Singh AK (2009) High density polyethylene (HDPE) clay nanocomposite for dielectric applications. IEEE Trans Dielectr Electr Insul 16(3):853–861

    Article  CAS  Google Scholar 

  28. Zaman HU, Khan MA, Khan RA, Beg MD (2014) Effect of nano-CaCO3 on the mechanical and crystallization behavior of HDPE/LDPE/nano-CaCO3 ternary blend. J Thermoplast Compos Mater 27(12):1701–1710

    Article  Google Scholar 

  29. Ali SFA(2016) Mechanical and thermal properties of promising polymer composites for food packaging applications. In: Global conference on polymer and composite materials (PCM 2016) IOP Publishing IOP conference series: materials science and engineering 137: 012035

  30. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Test 21(5):557–563

    Article  CAS  Google Scholar 

  31. Osman MA, Suter UW (2002) Surface treatment of calcite with fatty acids: structure and properties of the organic monolayer. Chem Mater 14(10):4408–4415

    Article  CAS  Google Scholar 

  32. Mojtaba S, Mohammad P, Salman J (2014) Thermal degradation mechanism of HDPE nanocomposites containing nano CaCO3. Res J Eng Sci 3(6):15–28

    CAS  Google Scholar 

  33. Fuad M, Hanim H, Zarina R, Ishak Z, Hassan A (2010) Polypropylene/calcium carbonate nanocomposites: effects of processing techniques and maleated polypropylene compatibiliser. Express Polym Lett 4(10):611–620

    Article  CAS  Google Scholar 

  34. Aziz SB, Abidin ZHZ (2015) Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: electrical and dielectric analysis. J Appl Polym Sci 132:41774–41784

    Article  Google Scholar 

  35. Aziz SB (2013) Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iran Polym J 22(12):877–883

    Article  CAS  Google Scholar 

  36. Aziz SB, Abidin ZHZ (2014) Electrical and morphological analysis of chitosan:AgTf solid electrolyte. Mater Chem Phys 144(3):280–286

    Article  CAS  Google Scholar 

  37. Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM (2018) A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Materials Devices 3(1):1–17

    Article  Google Scholar 

  38. Aziz SB, Hamsan MH, Kadir MFZ, Woo HJ (2020) Design of polymer blends based on chitosan:POZ with improved dielectric constant for application in polymer electrolytes and flexible electronics. Adv Polym Technol 10:1–10

    Article  Google Scholar 

  39. Aziz SB, Abdullah RM (2018) Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS: agNt]x: PEO(x − 1) (10 ≤ x ≤ 50). Electrochim Acta 285:30–46

    Article  CAS  Google Scholar 

  40. Panwar V, Mehra RM (2008) Analysis of electrical, dielectric, and electromagnetic interference shielding behavior of graphite filled high density polyethylene composites. Polym Eng Sci 10(1):2178–2187

    Article  Google Scholar 

  41. Aziz SB, Kadir MFZ, Hamsan MH, Woo HJ, Brza MA (2019) Development of polymer blends based on PVA: POZ with low dielectric constant for microelectronic applications. Sci Rep 9:13163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Elsad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.F.A., Elsad, R.A. & Mansour, S.A. Enhancing the dielectric properties of compatibilized high-density polyethylene/calcium carbonate nanocomposites using high-density polyethylene-g-maleic anhydride. Polym. Bull. 78, 1393–1405 (2021). https://doi.org/10.1007/s00289-020-03164-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03164-w

Keywords

Navigation