Skip to main content
Log in

Hydrogen Reduction of MoF6 and Molybdenum Carbide Formation in RF Inductively Coupled Low-Pressure Discharge: Experiment and Equilibrium Thermodynamics Consideration

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The physical plasma parameters, temperature and electron number density, are studied in the RF-IC (RF inductively coupled) discharge at a reduced pressure of 3 Torr in mixtures of MoF6 with Ar, H2 and CH4. The emission spectra of mixtures are investigated. It is shown that in the presence of argon, the concentration of free electrons in plasma and dissociation rate of MoF6 increase. A main role of molecular hydrogen is the generation of atomic hydrogen that binds atomic fluorine and leads to the formation of gaseous and solid products. Exhaust gas mixtures exiting the reactor are analyzed by mass spectrometry. It is shown that for all cases, the conversion of MoF6 into reaction products is close to 100%. A thermodynamic analysis of the equilibrium composition of MoF6 systems with Ar, H2 and CH4 was carried out and the obtained results are in good agreement with experimentally observed composition of the solid and gas phases. Analysis of solid deposits from mixture MoF6/H2/Ar revealed the presence of molybdenum powder and large amount of amorphous MoFx. The deposit obtained from mixtures with methane, MoF6/H2/Ar/CH4, contained crystalline molybdenum carbide, Mo3C2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Galkin NP, Tumanov YN (1971) Russian Chem Rev 40:154–164

    Article  Google Scholar 

  2. Borisevich VD, Khoroshilov AV, Cherednichenko SA (2005) 5th Int Conf Isotopes Brussel Belgium April 25-29 193-201

  3. Nakajima T, Shirasaki T (1997) J Electrochem Soc 144:2096–2100

    Article  CAS  Google Scholar 

  4. Di Giuseppe G, Selman JR (2003) J Electroanal Chem 559:31–43

    Article  Google Scholar 

  5. Wolden CA, Pickerell A, Gawai T, Parks S, Hensley J, Douglas Way J (2011) ACS Appl Mater Interfaces 3:517–521

    Article  CAS  Google Scholar 

  6. Zhao H, Cai K, Ma Z, Cheng Z, Jia T, Kimura H, Fu Q, Tao H, Xiong L (2018) J Appl Phys 123:053301–053306

    Article  Google Scholar 

  7. McDonald HO, Stephenson JB (1979) Chemical Vapor Deposition of Group IVB, VB, and VIB Elements: A Literature Review US Department of Interior. Bureau of Mines Information Circular, P5

  8. Shabarova LV, Sennikov PG, Kornev RA, Plekhovich AD, Kutyin AM (2019) High Energy Chem 53:482–489

    Article  CAS  Google Scholar 

  9. Shabarova LV, Plekhovich AD, Kutyin AM, Sennikov PG, Kornev RA (2019) High Energy Chem 53:155–161

    Article  CAS  Google Scholar 

  10. Kornev RA, Sennikov PG, Konychev DA, Potapov AM, Chuvilin DY, Yunin PA, Gusev SA, Naumann M (2016) J Radioanal Nucl Chem 309:833–840

    CAS  Google Scholar 

  11. The supply of medical radioisotopes: review of potential Molybdenum-99/Technetium-99 m production technologies (2010). OECD. Nuclear Energy Agency

  12. Chu JK, Tang CC, Hess DW (1982) Appl Phys Lett 41:75–77

    Article  CAS  Google Scholar 

  13. Tang CC, Chu JK, Hess DW (1983) Solid State Technol 26:125–128

    Article  CAS  Google Scholar 

  14. Kornev RA, Sennikov PG, Nazarov VV (2017) Plasma Phys Technol 4:169–172

    Article  Google Scholar 

  15. Fox-Lyon N, Knoll AJ, Franek J, Demidov V, Godyak V, Koepke M, Oehrlein GS (2013) J Phys D Appl Phys 46:485202–485206

    Article  Google Scholar 

  16. Mutsukura N, Ohuchi M, Satoh S, Machi Y (1983) Thin Solid Films 109:47–57

    Article  CAS  Google Scholar 

  17. Bruno G, Capezzuto P, Cicala G (1991) J Appl Phys 69:7256–7266

    Article  CAS  Google Scholar 

  18. Sukhanov YN, Ershov AP, Rudenko KV, Orlikovsky AA (2005) Plasma Proc Polym 2:472–479

    Article  CAS  Google Scholar 

  19. Kut’in AM, Polyakov VS (2007) XVI International Conference on Chemical Thermodynamics Russia July 1-6 2:514-515

  20. Belov SG, Iorish VS, Yungman VS (2000) High Trmperature 38:191–196

    Article  CAS  Google Scholar 

  21. Stern KH, Weise EL (1966) High temperature properties and decomposition of inorganic salts, NSRDS- NBS7. US Gov Print Office, Washington, D.C.

    Google Scholar 

  22. Gurvich LV, Veitz IV, Alcock CB (1989) Thermodynamic Proper- ties of Individual Substances, New York: Hemisphere 21

  23. Rodríguez J, Yousif FB, Fuentes BE, Vázquez F, Rivera M, López-Patiño J, Figueroa A, Martínez H (2018) Phys Plasmas 25:053512–053521

    Article  Google Scholar 

  24. Zhao G, Wang H, Si X (2017) Phys Plasmas 24:123507–123514

    Article  Google Scholar 

  25. Boris DR, Fernsler RF, Walton SG (2015) Plasma Sources Sci Technol 24:025032–025041

    Article  Google Scholar 

  26. Sennikov PG, Kornev RA, Mochalov LA, Shilaev AA, Golubev SV (2014) High Energy Chem 48:49–53

    Article  CAS  Google Scholar 

  27. Kornev RA, Sennikov PG (2015) Plasma Chem Plasma Proc 35:1111–1118

    Article  CAS  Google Scholar 

  28. Zaidel AN, Prokofiev VК, Raiskii SM, Slavnyi VA, Shreider EYa (1969) [Tables of spectral lines] M.: Nauka, 782 pp. [in Russian]

  29. Beattie WH (1975) Appl Spectroscopy 29:334–337

    Article  CAS  Google Scholar 

  30. Gusev AV, Kornev RA, Sukhanov AY (2013) High Energy Chem 47:272–274

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. M. Drozdov and Dr. P. Yunin for help with XRF and SIMS measurements. The RSF Grant No 20-13-00035 and support from the Russian Ministry of Education and Science (subject 0095-2019-0008) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Kornev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sennikov, P.G., Gornushkin, I.B., Kornev, R.A. et al. Hydrogen Reduction of MoF6 and Molybdenum Carbide Formation in RF Inductively Coupled Low-Pressure Discharge: Experiment and Equilibrium Thermodynamics Consideration. Plasma Chem Plasma Process 41, 673–690 (2021). https://doi.org/10.1007/s11090-020-10138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10138-3

Keywords

Navigation