Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diverse polarization angle swings from a repeating fast radio burst source

Abstract

Fast radio bursts (FRBs) are millisecond-duration radio transients1,2 of unknown origin. Two possible mechanisms that could generate extremely coherent emission from FRBs invoke neutron star magnetospheres3,4,5 or relativistic shocks far from the central energy source6,7,8. Detailed polarization observations may help us to understand the emission mechanism. However, the available FRB polarization data have been perplexing, because they show a host of polarimetric properties, including either a constant polarization angle during each burst for some repeaters9,10 or variable polarization angles in some other apparently one-off events11,12. Here we report observations of 15 bursts from FRB 180301 and find various polarization angle swings in seven of them. The diversity of the polarization angle features of these bursts is consistent with a magnetospheric origin of the radio emission, and disfavours the radiation models invoking relativistic shocks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polarization profiles and dynamic spectra of the seven brightest bursts from FRB 180301.
Fig. 2: RM values of seven bursts from FRB 180301.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at https://psr.pku.edu.cn/index.php/publications/frb180301/.

Code availability

The BEAR package is available at https://psr.pku.edu.cn/index.php/publications/frb180301/.

References

  1. Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J. & Crawford, F. A bright millisecond radio burst of extragalactic origin. Science 318, 777–780 (2007).

    CAS  PubMed  ADS  Google Scholar 

  2. Petroff, E., Hessels, J. W. T. & Lorimer, D. R. Fast radio bursts. Astron. Astrophys. Rev. 27, 4 (2019).

    ADS  Google Scholar 

  3. Kumar, P., Lu, W. & Bhattacharya, M. Fast radio burst source properties and curvature radiation model. Mon. Not. R. Astron. Soc. 468, 2726–2739 (2017).

    CAS  ADS  Google Scholar 

  4. Zhang, B. A. “Cosmic comb” model of fast radio bursts. Astrophys. J. Lett. 836, 32 (2017).

    ADS  Google Scholar 

  5. Yang, Y.-P. & Zhang, B. Bunching coherent curvature radiation in three-dimensional magnetic field geometry: application to pulsars and fast radio bursts. Astrophys. J. 868, 31 (2018).

    CAS  ADS  Google Scholar 

  6. Lyubarsky, Y. A model for fast extragalactic radio bursts. Mon. Not. R. Astron. Soc. 442, L9–L13 (2014).

    ADS  Google Scholar 

  7. Metzger, B. D., Margalit, B. & Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 485, 4091–4106 (2019).

    CAS  ADS  Google Scholar 

  8. Beloborodov, A. M. Blast waves from magnetar flares and fast radio bursts. Astrophys. J. 896, 142 (2020).

    ADS  Google Scholar 

  9. Michilli, D. et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182–185 (2018).

    CAS  PubMed  ADS  Google Scholar 

  10. CHIME/FRB Collaboration et al. CHIME/FRB discovery of eight new repeating fast radio burst sources. Astrophys. J. Lett. 885, 24 (2019).

    ADS  Google Scholar 

  11. Masui, K. et al. Dense magnetized plasma associated with a fast radio burst. Nature 528, 523–525 (2015).

    CAS  PubMed  ADS  Google Scholar 

  12. Cho, H. et al. Spectropolarimetric analysis of FRB 181112 at microsecond resolution: implications for fast radio burst emission mechanism. Astrophys. J. Lett. 891, 38 (2020).

    ADS  Google Scholar 

  13. Jiang, P. et al. Commissioning progress of the FAST. Sci. China Phys. Mech. Astron. 62, 959502 (2019).

    Google Scholar 

  14. Price, D. C. et al. A fast radio burst with frequency-dependent polarization detected during Breakthrough Listen observations. Mon. Not. R. Astron. Soc. 486, 3636–3646 (2019).

    ADS  Google Scholar 

  15. Spitler, L. G. et al. A repeating fast radio burst. Nature 531, 202–205 (2016).

    CAS  PubMed  ADS  Google Scholar 

  16. CHIME/FRB Collaboration A second source of repeating fast radio bursts. Nature 566, 235–238 (2019).

    ADS  Google Scholar 

  17. Fonseca, E. et al. Nine new repeating fast radio burst sources from CHIME/FRB. Astrophys. J. Lett. 891, 6 (2020).

    ADS  Google Scholar 

  18. Hessels, J. W. T. et al. FRB 121102 bursts show complex time-frequency structure. Astrophys. J. Lett. 876, 23 (2019).

    ADS  Google Scholar 

  19. Petroff, E. et al. A polarized fast radio burst at low Galactic latitude. Mon. Not. R. Astron. Soc. 469, 4465–4482 (2017).

    CAS  ADS  Google Scholar 

  20. Radhakrishnan, V. & Cooke, D. J. Magnetic poles and the polarization structure of pulsar radiation. Astrophys. J. 3, 225–229 (1969).

    Google Scholar 

  21. Levin, L. et al. Radio emission evolution, polarimetry and multifrequency single pulse analysis of the radio magnetar PSR J1622–4950. Mon. Not. R. Astron. Soc. 422, 2489–2500 (2012).

    ADS  Google Scholar 

  22. Eatough, R. P. et al. A strong magnetic field around the supermassive black hole at the centre of the Galaxy. Nature 501, 391–394 (2013).

    CAS  PubMed  ADS  Google Scholar 

  23. Camilo, F. et al. Radio disappearance of the magnetar XTE J1810–197 and continued X-ray timing. Astrophys. J. 820, 110 (2016).

    ADS  Google Scholar 

  24. Zhang, B. FRB 121102: a repeatedly combed neutron star by a nearby low-luminosity accreting supermassive black hole. Astrophys. J. Lett. 854, 21 (2018).

    ADS  Google Scholar 

  25. Oppermann, N., Yu, H.-R. & Pen, U.-L. On the non-Poissonian repetition pattern of FRB121102. Mon. Not. R. Astron. Soc. 475, 5109–5115 (2018).

    ADS  Google Scholar 

  26. Spitler, L. G. et al. Pulse broadening measurements from the Galactic Center pulsar J1745–2900. Astrophys. J. Lett. 780, 3 (2013).

    ADS  Google Scholar 

  27. Jiang, P. et al. The fundamental performance of FAST with 19-beam receiver at L band. Res. Astron. Astrophys. 20, 064 (2020).

    ADS  Google Scholar 

  28. Hickish, J. et al. A decade of developing radio-astronomy instrumentation using casper open-source technology. J. Astron. Instrum. 5, 1641001–1641012 (2016).

    Google Scholar 

  29. Men, Y. P. et al. Piggyback search for fast radio bursts using Nanshan 26 m and Kunming 40 m radio telescopes – I. Observing and data analysis systems, discovery of a mysterious peryton. Mon. Not. R. Astron. Soc. 488, 3957–3971 (2019).

    CAS  ADS  Google Scholar 

  30. Lorimer, D. R. & Kramer, M. Handbook of Pulsar Astronomy (Cambridge Univ. Press, 2012).

  31. Luo, R., Lee, K., Lorimer, D. R. & Zhang, B. On the normalized FRB luminosity function. Mon. Not. R. Astron. Soc. 481, 2320–2337 (2018).

    CAS  ADS  Google Scholar 

  32. Cordes, J. M. & Lazio, T. J. W. NE2001.I. A new model for the Galactic distribution of free electrons and its fluctuations. Preprint at https://arxiv.org/abs/astro-ph/0207156 (2002).

  33. Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    ADS  Google Scholar 

  34. Dolag, K., Gaensler, B. M., Beck, A. M. & Beck, M. C. Constraints on the distribution and energetics of fast radio bursts using cosmological hydrodynamic simulations. Mon. Not. R. Astron. Soc. 451, 4277–4289 (2015).

    CAS  ADS  Google Scholar 

  35. Deng, W. & Zhang, B. Cosmological implications of fast radio burst/gamma-ray burst associations. Astrophys. J. Lett. 783, 35 (2014).

    ADS  Google Scholar 

  36. Hotan, A. W., van Straten, W. & Manchester, R. N. PSRCHIVE and PSRFITS: an open approach to radio pulsar data storage and analysis. Publ. Astron. Soc. Aust. 21, 302–309 (2004).

    ADS  Google Scholar 

  37. Dunning, A. et al. Design and laboratory testing of the five hundred meter aperture spherical telescope (FAST) 19 beam L-band receiver. In XXXIInd International Union of Radio Science General Assembly and Scientific Symposium (eds Arnold, V. et al.), J9–1 (2017).

  38. Desvignes, G. et al. Radio emission from a pulsar’s magnetic pole revealed by general relativity. Science 365, 1013–1017 (2019).

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  39. Schnitzeler, D. H. F. M. & Lee, K. J. Rotation measure synthesis revisited. Mon. Not. R. Astron. Soc. 447, L26–L30 (2015).

    ADS  Google Scholar 

  40. Schnitzeler, D. H. F. M. & Lee, K. J. Finding a faint polarized signal in wide-band radio data. Mon. Not. R. Astron. Soc. 466, 378–391 (2017).

    ADS  Google Scholar 

  41. Sotomayor-Beltran, C. et al. Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes. Astron. Astrophys. 552, A58 (2013).

    Google Scholar 

  42. Johnston, S. & Kerr, M. Polarimetry of 600 pulsars from observations at 1.4 GHz with the Parkes radio telescope. Mon. Not. R. Astron. Soc. 474, 4629–4636 (2018).

    CAS  ADS  Google Scholar 

  43. Schnitzeler, D. H. F. M., Banfield, J. K. & Lee, K. J. Polarization signatures of unresolved radio sources. Mon. Not. R. Astron. Soc. 450, 3579–3596 (2015).

    ADS  Google Scholar 

  44. Xu, J. & Han, J. L. Extragalactic dispersion measures of fast radio bursts. Res. Astron. Astrophys. 15, 1629–1638 (2015).

    CAS  ADS  Google Scholar 

  45. Xu, J. & Han, J. L. Redshift evolution of extragalactic rotation measures. Mon. Not. R. Astron. Soc. 442, 3329–3337 (2014).

    ADS  Google Scholar 

  46. Noutsos, A., Karastergiou, A., Kramer, M., Johnston, S. & Stappers, B. W. Phase-resolved Faraday rotation in pulsars. Mon. Not. R. Astron. Soc. 396, 1559–1572 (2009).

    ADS  Google Scholar 

  47. Lu, W. & Kumar, P. On the radiation mechanism of repeating fast radio bursts. Mon. Not. R. Astron. Soc. 477, 2470–2493 (2018).

    CAS  ADS  Google Scholar 

  48. Katz, J. I. Coherent emission in fast radio bursts. Phys. Rev. D 89, 103009 (2014).

    ADS  Google Scholar 

  49. Waxman, E. On the origin of fast radio bursts (FRBs). Astrophys. J. 842, 34 (2017).

    ADS  Google Scholar 

  50. Plotnikov, I. & Sironi, L. The synchrotron maser emission from relativistic shocks in Fast Radio Bursts: 1D PIC simulations of cold pair plasmas. Mon. Not. R. Astron. Soc. 485, 3816–3833 (2019).

    CAS  ADS  Google Scholar 

  51. Sironi, L. & Spitkovsky, A. Acceleration of particles at the termination shock of a relativistic striped wind. Astrophys. J. 741, 39 (2011).

    ADS  Google Scholar 

  52. Manchester, R. N. & Taylor, J. H. Pulsars (W. H. Freeman, 1977).

  53. Cordes, J. M. & Chatterjee, S. Fast radio bursts: an extragalactic enigma. Annu. Rev. Astron. Astrophys. 57, 417–465 (2019).

    ADS  Google Scholar 

  54. Zhang, B. Fast radio bursts from interacting binary neutron star systems. Astrophys. J. Lett. 890, 24 (2020).

    ADS  Google Scholar 

  55. Zhang, Y. G. et al. Fast radio burst 121102 pulse detection and periodicity: a machine learning approach. Astrophys. J. 866, 149 (2018).

    ADS  Google Scholar 

  56. Wang, W., Zhang, B., Chen, X. & Xu, R. On the time–frequency downward drifting of repeating fast radio bursts. Astrophys. J. Lett. 876, 15 (2019).

    ADS  Google Scholar 

  57. Lyutikov, M. Radius-to-frequency mapping and FRB frequency drifts. Astrophys. J. 889, 135 (2020).

    CAS  ADS  Google Scholar 

  58. Feroz, F., Hobson, M. P. & Bridges, M. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    ADS  Google Scholar 

Download references

Acknowledgements

This work used data from FAST, a Chinese national mega-science facility, built and operated by the National Astronomical Observatories, Chinese Academy of Sciences. This work is supported by the Natural Science Foundation of China (U15311243, 11988101, 11833009, 11690024, CAS XDB23010200), the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CAS, the Max-Planck Partner Group, NKRDPC 2017YFA0402600 and the Youth Innovation Promotion Association of CAS (2018075).

Author information

Authors and Affiliations

Authors

Contributions

R.L. led the observational proposal 2019a-129-P in the FAST ‘Shared-Risk’ observations and the statistical analysis of repeating events. B.J.W., Y.P.M., C.F.Z. and K.J.L. developed the searching pipeline and processed the raw data to produce FRB candidates. J.C.J. conducted the polarization calibration and RM measurements. H.X. conducted the flux calibration. R.N.C. and Y.J.G. performed the timing analysis. B.Z., W.Y.W., R.X.X. and J.P. provided theoretical discussions. J.Y., M.W. and N.W. contributed to discussions on observation planning. K.J.L., J.L.H. and B.Z. organized the FRB searching team, co-supervised the data analysis and interpretations and led the writing of the paper. The search software BEAR was tested by M.Z.C., X.L.C., L.F.H., Y.X.H., J.L., Z.X.L., J.T.L., X.P., Z.G.W. and Y.H.X. FAST observations, instrument setting and monitoring was done by P.J., L.Q., H.Q.G., H.L., J.H.S., J.Y., D.J.Y. and Y.Z. All authors contributed to the analysis or interpretation of the data and to the final version of the manuscript.

Corresponding authors

Correspondence to K. J. Lee, J. L. Han or B. Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jason Hessels and Victoria Kaspi for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Dynamic spectra for all 15 detected bursts of FRB 180301.

a, Dedispersed pulse profile. b, Dynamic spectra for the total intensity as a function of frequency and time (with a frequency resolution 1.95 MHz per channel and a time resolution of 393.2 μs per bin). The colour bars denote the intensity S/N scaled with the off-pulse r.m.s. value. The DMaligned values in Table 1 are used to dedisperse each burst. For bursts 1–4 we plot the raw intensity because only two linear polarization channels were recorded. For the rest of the bursts, polarization calibrations were performed.

Extended Data Fig. 2 Observed and fitted Stokes parameters Q and U for linear polarization as a function of frequency.

a, c, Normalized Stokes parameter Q and fitting residuals. b, d, Normalized Stokes parameter U and fitting residuals. The amplitudes of the oscillation have been normalized using the inferred linear polarization intensity. e, Stokes parameter V normalized by the total intensity in each channel. The grey shaded frequencies are removed before fitting owing to low signal intensities, RFI or band-edge effects. The error bars denote the 68% confidence intervals. The burst number in each subplot is as in Table 1.

Extended Data Fig. 3 RM synthesis results of the seven bursts.

We calculate the RM spectrum within the range −8,000 to +8,000 rad m−2. The horizontal red shaded area denotes the 1σ interval of the baseline. The vertical red line denotes the best-fit RM value. We also show a zoom-in of the spectral peak, where the vertical orange dashed lines show the range in which the spectrum is used in peak fitting. The best-fitting Gaussian and its 68% confidence interval are indicated by the orange curve and blue shading. The vertical red lines and shading show the best-fit RM and the 68% confidence intervals. We also show the Bayesian RM, indicated by the vertical black lines and shading. The burst number in each sub-plot is defined in Table 1.

Extended Data Fig. 4 Polarimetry stability test.

a, Temporal stability test. The RM values of PSR J1915+1009 measured with the Bayesian method confirm that there is no obvious RM variation in a one-day interval. The error bars denote 68% confidence intervals. b, Off-axis polarimetry test. PSR J1915+1009 was first placed at the beam centre and then 2.6′ away from the beam centre. The RM values measured with the Bayesian method confirm that there is no apparent systematic error for the off-axis illumination. The off-axis data point has a larger error because S/N drops for those observations owing to the off-axis illumination. c, Polarization pulse profile and PA for PSR J1915+1009, observed with central illumination. d, As in c, but off-axis illumination is used. e, Polarization profile and PA with central illumination observed one day later. f, Polarization pulse profile measured with the Parkes radio telescope by Johnston & Kerr42.

Extended Data Fig. 5 The joint fitting results of the RM synthesis spectra.

a, Bursts 5, 7, 9, 10 on 6 October 2019. b, Bursts 11, 12, 13 on 7 October 2019. c, All seven bursts. The notation is the same as in Extended Data Fig. 3.

Extended Data Fig. 6 RM synthesis spectra before and after thin-screen subtraction.

The blue and orange curve are the RM synthesis intensity spectra for burst 5. The orange curve is computed after subtracting the Stokes parameters Q and U corresponding to the RM of burst 5. The orange curve is consistent with noise. This indicates a thin-screen scenario for the Faraday rotation.

Extended Data Fig. 7 Polarization profiles of seven bright bursts and their dynamic spectra.

Here we used the globally fitted RM = 543.7 ± 2.6 rad m−2 to derotate the linear polarization. The other settings are the same as in Fig. 1.

Extended Data Fig. 8 Comparison of PA swing from seven bright bursts using different DM values in dedispersion.

ad, For each burst, blue curves use individually measured DM values as in Table 1 (a), orange curves use the DM of burst 5 (b), green curves use the lowest DM (from burst 12) (c) and red curves use the highest DM (from burst 10) (d).

Extended Data Fig. 9 Posterior distribution for the burst rate inference.

a, Marginalized posterior of the burst rate. The dashed and dotted lines denote 68% and 95% confidence levels, respectively. b, Two-dimensional distribution of the posterior. The horizontal and vertical axes show the burst rate and the shape parameter of the Weibull distribution, respectively. c, Marginalized posterior for the shape parameter.

Extended Data Table 1 FAST observations of FRB 180301

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, R., Wang, B.J., Men, Y.P. et al. Diverse polarization angle swings from a repeating fast radio burst source. Nature 586, 693–696 (2020). https://doi.org/10.1038/s41586-020-2827-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2827-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing