Skip to main content
Log in

Preparation, carbon black dispersibility and performances of novel biobased integral solution-polymerized styrene–butadiene rubber with β-myrcene bottlebrush segments

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of green myrcene-based styrene–butadiene integral rubber were designed and prepared by anionic solution polymerization for solving the fossil depletion and achieving the excellent comprehensive performances, including SBR (75) + MR (25), r-SBMR, b-SBMR and s-b-SBMR. The RPA, SAXS, SEM and TEM results revealed that flexible side chain in myrcene bottlebrush segments, which was beneficial to spread and infiltrate on the surface of the filler, could significantly improve carbon black (CB) dispersibility and inhibit the strong filler–filler interactions. The degree of improvement in CB dispersibility can be ranked as follows: SBR (unmodified rubber) < SBR (75) + MR (25) (mechanical blending rubber) < r-SBMR (26) (random copolymerized rubber) < b-SBMR (26) (block copolymerized rubber) < s-b-SBMR (26) (star block copolymerized rubber). Furthermore, for the star-shaped integral rubber, rolling resistance decreased by 40.2%, wet skid resistance increased by 74.8%, and elongation at break increased by 8.30% without sacrificing the physical and mechanical properties compared with the unmodified SSBR/CB composites. The results show that the chain segment of the bottlebrush structure has reasonably obvious advantages over than that of the random distribution structure in improving the dynamic mechanical properties of rubber. On the basis of aforementioned assessment, we believe that CB-reinforced β-myrcene-based styrene–butadiene integrated rubber is a versatile and promising candidate for future tire tread elastomers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hauptman N, Žveglič M, Maček M, Gunde MK (2009) Carbon based conductive photoresist. J Mater Sci 44:4625–4632. https://doi.org/10.1007/s10853-009-3706-2

    Article  CAS  Google Scholar 

  2. Zhang C, Ma CA, Wang P, Sumita M (2005) Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction. Carbon 43:2544–2553

    CAS  Google Scholar 

  3. Hong CK, Kim H, Ryu C, Nah C, Huh Y, Kaang S (2007) Effects of particle size and structure of carbon blacks on the abrasion of filled elastomer compounds. J Mater Sci 42:8391–8399. https://doi.org/10.1007/s10853-007-1795-3

    Article  CAS  Google Scholar 

  4. Flandin L, Hiltner A, Baer E (2001) Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene−octene elastomer. Polymer 42:827–838

    CAS  Google Scholar 

  5. Wang YX, Wu YP, Li WJ, Zhang LQ (2011) Influence of filler type on wet skid resistance of SSBR/BR composites: effects from roughness and micro-hardness of rubber surface. Appl Surf Sci 257:2058–2065

    CAS  Google Scholar 

  6. Jiang C, He H, Yao X, Yu P, Zhou L, Jia D (2017) The aggregation structure regulation of lignin by chemical modification and its effect on the property of lignin/styrene–butadiene rubber composites. J Appl Polym Sci 135:45759–45770

    Google Scholar 

  7. Karásek L, Sumita M (1996) Characterization of dispersion state of filler and polymer-filler interactions in rubber–carbon black composites. J Mater Sci 31:281–289. https://doi.org/10.1007/BF01139141

    Article  Google Scholar 

  8. Xu T, Jia Z, Li J, Luo Y, Jia D, Peng Z (2016) Study on the dispersion of carbon black/silica in SBR/BR composites and its properties by adding epoxidized natural rubber as a compatilizer. Polym Compos 39:377–385

    Google Scholar 

  9. Li L, Guo P, Wen J, Huang L, Fu F, Xiao T (2019) Size effect of carbon black on the structure and mechanical properties of magnetorheological elastomers. J Mater Sci 54:1326–1340. https://doi.org/10.1007/s10853-018-2898-8

    Article  CAS  Google Scholar 

  10. Halasa A, Gross B, Hsu B et al (1990) SIBR for high performance tyres. Europ Rubb J 172:35–38

    Google Scholar 

  11. Choi J, Isayev AI (2015) Natural rubber/styrene butadiene rubber blends prepared by ultrasonically aided extrusion. J Elast Plast 47:170–193

    CAS  Google Scholar 

  12. Nordsiek KH (1985) The “integral rubber” concept—an approach to an ideal tire tread rubber. Kauts Gummi Kunstst 38:178–185

    CAS  Google Scholar 

  13. Zhang Y, Zhang C, Li Y et al (2010) Study on emusion terpolymerization of styrene–butadiene–isoprene. Chin Elast 20:15–19 (In Chinese)

    Google Scholar 

  14. Xu Q, Li L, Guo F et al (2014) The terpolymer of neodymium-catalyzed styrene, isoprene, and butadiene: efficient synthesis of integral rubber containing atactic styrene–styrene sequences and high cis-1,4 polyconjugated olefins. Polym Eng Sci 54:1858–1863

    CAS  Google Scholar 

  15. Zhong B, Shi J, Dong M (2011) Highly regio- and stereoselective terpolymerization of styrene, isoprene and butadiene with lutetium-based coordination catalyst. Macromolecules 44:7675–7681

    Google Scholar 

  16. Cinzia C, Maria CS, Marta GM, Alfonso G (2007) Copolymerization of styrene with butadiene and isoprene catalyzed by the monocyclopentadienyl titanium complex Ti(η5-C5H5)(η2-MBMP)Cl. Macromolecules 40:7089–7097

    Google Scholar 

  17. Xu Y, Liang H, Wang N et al (2009) Polymerization kinetics behavior of butadiene/isoprene/styrene with tin-containing organolithium as initiator. Polym Mater Sci Eng 25:5–8 (In Chinese)

    Google Scholar 

  18. Lach R, Adhikari R, Weidisch R, Huy TA, Michler GH, Grellmann W, Knoll K (2004) Crack toughness behavior of binary poly(styrene-butadiene) block copolymer blends. J Mater Sci 39:1283–1295. https://doi.org/10.1023/B:JMSC.0000013887.79570.33

    Article  CAS  Google Scholar 

  19. Halasa AF (1997) Preparation and characterization of solution SIBR via anionic polymerization. Rubber Chem Technol 70:457–463

    Google Scholar 

  20. Yuan X, Wang J, Shan D (2015) Styrene/isoprene/butadiene integrated rubber perpared by anionic bulk polymerization in a twin-screw extruder. Polym Eng Sci 55:1163–1169

    CAS  Google Scholar 

  21. Su H, Hua Z, Xing Y (2004) Structural morphology and properties of star styrene–isoprene–butadiene rubber and natural rubber/star styrene–butadiene rubber blends. J Appl Polym Sci 93:336–341

    Google Scholar 

  22. Xin H, Shu Q, Lin X (2018) Preparation, structure, and properties of Sn-functionalized star-shaped styrene-isoprene-butadiene copolymer. Macromol Res 26:924–933

    Google Scholar 

  23. Ling L, Hong W, Qiu Y, Li L, Yu R, Yang L (2014) In-chain multi-functionalized random butadiene–styrene copolymer via anionic copolymerization with 1,1-bis(4-dimethylaminophenyl)ethylene: synthesis and its application as a rubber matrix of carbon black-based composite. J Mater Sci 49:5171–5181. https://doi.org/10.1007/s10853-014-8225-0

    Article  CAS  Google Scholar 

  24. Hua D, Xing Y, Su H (2009) Tin-coupled star-shaped block copolymer of styrene and butadiene (I) synthesis and characterization. J Appl Polym Sci 110:228–236

    Google Scholar 

  25. Hua D, Xing Y, Su H (2009) Tin-coupled star-shaped block copolymer of styrene and butadiene (II) properties and application. J Appl Polym Sci 111:602–611

    Google Scholar 

  26. De HGX, Zumstein MT, Tiegs BJ, Brutman JP, McNeill K, Sander M, Coates GW, Hillmyer MA (2018) Sustainable polyester elastomers from lactones: synthesis, properties, and enzymatic hydrolyzability. J Am Chem Soc 140:963–973

    Google Scholar 

  27. Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540:354–362

    CAS  Google Scholar 

  28. Wang Z, Yuan L, Tang C (2017) Sustainable elastomers from renewable biomass. Acc Chem Res 50:1762–1773

    CAS  Google Scholar 

  29. Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: recent advances. Prog Polym Sci 48:1–39

    CAS  Google Scholar 

  30. Zarrinbakhsh N, Mohanty AK, Misra M (2013) Improving the interfacial adhesion in a new renewable resource-based biocomposites from biofuel coproduct and biodegradable plastic. J Mater Sci 48:6025–6038. https://doi.org/10.1007/s10853-013-7399-1

    Article  CAS  Google Scholar 

  31. Naddeo M, Buonerba A, Luciano E, Grassi A, Proto A, Capacchione C (2017) Stereoselective polymerization of biosourced terpenes β-myrcene and β-ocimene and their copolymerization with styrene promoted by titanium catalysts. Polymer 131:151–159

    CAS  Google Scholar 

  32. Zhou C, Wei Z, Lei X, Li Y (2016) Fully biobased thermoplastic elastomers: synthesis and characterization of poly (L-lactide)-b-polymyrcene-b-poly(L-lactide) triblock copolymers. RSC Adv 6:63508–63514

    CAS  Google Scholar 

  33. Lei W, Yang X, Qiao H, Shi D, Wang R, Zhang L (2018) Renewable resource-based elastomer nanocomposite derived from myrcene, ethanol, itaconic acid and nanosilica: design, preparation and properties. Eur Polym J 106:1–8

    CAS  Google Scholar 

  34. Sarkar P, Bhowmick AK (2016) Green approach toward sustainable polymer: synthesis and characterization of poly(myrcene-co-dibutyl itaconate). ACS Sustain Chem Eng 4:2129–2141

    CAS  Google Scholar 

  35. Wilbon PA, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8–37

    CAS  Google Scholar 

  36. Yao K, Tang C (2013) Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46:1689–1712

    CAS  Google Scholar 

  37. Sarkar P, Bhowmick AK (2014) Synthesis, characterization and properties of a bio-based elastomer: polymyrcene. RSC Adv 4:61343–61354

    CAS  Google Scholar 

  38. Johanson AJ, Mckennon FL, Goldblatt LA (1948) Emulsion polymerization of myrcene. Ind Eng Chem 40:500–502

    CAS  Google Scholar 

  39. Marvel CS, Hwa CCL (1960) Polymyrcene. J Polym Sci 45:25–34

    CAS  Google Scholar 

  40. Bo L, Lei L, Guang S, Dong L, Shi L, Dong C (2015) Isoselective 3,4-(co)polymerization of bio-renewable myrcene using NSN-ligated rare-earth metal precursor: an approach to a new elastomer. Chem Commun 51:1039–1041

    Google Scholar 

  41. Bauer N, Brunke J, Kali G (2017) Controlled radical polymerization of myrcene in bulk: mapping the effect of conditions on the system. ACS Sustainable Chem Eng 5:10084–10092

    CAS  Google Scholar 

  42. Niedner L, Kali G (2019) Green engineered polymers: solvent free, room-temperature polymerization of monomer from a renewable resource, without utilizing initiator. ChemistrySelect 4:3495–3499

    CAS  Google Scholar 

  43. Matic A, Schlaad H (2018) Thiol-ene photofunctionalization of 1,4polymyrcene. Polym Int 67:500–505

    CAS  Google Scholar 

  44. Sarkar P, Bhowmick AK (2017) Terpene based sustainable methacrylate copolymer series by emulsion polymerization: synthesis and structure-property relationship. J Polym Sci Part A Polym Chem 55:2639–2649

    CAS  Google Scholar 

  45. Sarkar P, Bhowmick AK (2016) Terpene based sustainable elastomer for low rolling resistance and improved wet grip application: synthesis, characterization and properties of poly(styrene-co-myrcene). ACS Sustain Chem Eng 4:5462–5474

    CAS  Google Scholar 

  46. Sahu P, Sarkar P, Bhowmick AK (2018) Design of a molecular architecture via a green route for an improved silica reinforced nanocomposite using bioresources. ACS Sustain Chem Eng 6:6599–6611

    CAS  Google Scholar 

  47. Sarkar P, Bhowmick AK (2018) Terpene-based sustainable elastomers: vulcanization and reinforcement characteristics. Ind Eng Chem Res 57:5197–5206

    CAS  Google Scholar 

  48. Métafiot A, Kanawati Y, Gérard JF, Defoort B, Marić M (2017) Synthesis of β-myrcene-based polymers and styrene block and statistical copolymers by SG1 nitroxide-mediated controlled radical polymerization. Macromolecules 50:3101–3120

    Google Scholar 

  49. Bo L, Dong L, Shi L, Guang S, Dong C (2016) High trans-1,4(Co) polymerization of β-myrcene and isoprene with an iminophosphonamide lanthanum catalyst. Polym Sci 34:104–110

    Google Scholar 

  50. Sibaja B, Sargent J, Auad ML (2015) Renewable thermoset copolymers from tung oil and natural terpenes. J Appl Polym Sci 131:205–212

    Google Scholar 

  51. Ren X, Guo F, Fu H, Song Y, Li Y, Hou Z (2018) Scandiumcatalyzed copolymerization of myrcene with ethylene and propylene: convenient syntheses of versatile functionalized polyolefins. Polym Chem 9:1223–1233

    CAS  Google Scholar 

  52. Laur E, Welle A, Vantomme A, Brusson JM, Carpentier JF, Kirillov E (2017) Stereoselective copolymerization of styrene with terpenes catalyzed by an ansa-lanthanidocene catalyst: access to new syndiotactic polystyrene-based materials. Catalysts 7:361–373

    Google Scholar 

  53. Quirk RP, Huang TL (1984) Alkyllithium-initiated polymerization of myrcene new block copolymers of styrene and myrcene. In: Culbertson BM, Pittman CU (eds) New monomers and polymers. Plenum, New York, pp 329−355

    Google Scholar 

  54. Zhang J, Lu J, Su K, Wang D, Han B (2019) Bio-based β-myrcene-modified solution-polymerized styrene–butadiene rubber for improving carbon black dispersion and wet skid resistance. J Appl Polym Sci 136:48159–48169

    Google Scholar 

  55. Hulnik MI, Vasilenko IV, Radchenko AV, Peruch F, Ganachaud F, Kostjuk SV (2018) Aqueous cationic homo- and copolymerizations of β-myrcene and styrene: a green route toward terpene-based rubbery polymers. Polym Chem 9:5690–5700

    CAS  Google Scholar 

  56. Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6:57–63

    CAS  Google Scholar 

  57. Takino H, Nakayama R, Yamada Y, Kohjiya S, Matsuo T (1997) Viscoelastic properties of elastomers and tire wet skid resistance. Rubber Chem Technol 70:584–594

    CAS  Google Scholar 

  58. Breiner JM, Mark JE (1998) Preparation, structure, growth mechanisms and properties of siloxane composites containing silica, titania or mixed silica−titania phases. Polymer 39:5483–5493

    CAS  Google Scholar 

  59. Marega C, Causin V, Saini R, Marigo A, Meera AP, Thomas S, Devi KSU (2012) A direct SAXS approach for the determination of specific surface area of clay in polymer-layered silicate nanocomposites. J Phys Chem B 116:7596–7602

    CAS  Google Scholar 

  60. Geoffrey O, Joseph I, Evgeni P, Ricardas M, Ausvydas V, Per MC (2008) Adsorption characteristics of bottle-brush polymers on silica: effect of side chain and charge density. Langmuir 24:5341–5349

    Google Scholar 

  61. Wernersson E, Linse P (2013) Spreading and brush formation by end-grafted bottle-brush polymers with adsorbing side chains. Langmuir 29:10455–10462

    CAS  Google Scholar 

  62. Zeng Z, Yu H, Wang Q, Lu G (2008) Effects of coagulation processes on properties of epoxidizcd natural rubber. J Amer Chem Soc 109:1944–1949

    CAS  Google Scholar 

  63. Takino H, Nakayatna R, Yamada Y, Kohjiya S (1997) Viscoelastic properties of elastomers and tire wet skid resistance. Rubber Chem Technol 70:584–594

    CAS  Google Scholar 

  64. Robertson CG, Lin CJ, Rackaitis M, Roland CM (2008) Influence of particle size and polymer-filler coupling on viscoelastic glass transition of particle-reinforced polymers. Macromolecules 41:2727–2731

    CAS  Google Scholar 

  65. Wang MJ, Mahmud K, Murphy LJ, Patterson WJ (1998) Carbon-silica dual phase filler, a new generation reinforcing agent for rubber. Part I. Characterization. Kautsch Gummi Kunstst 51:348–360

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research Program of China (Grant No. 2015CB654701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianmin Lu or Bingyong Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Lu, J., Wang, D. et al. Preparation, carbon black dispersibility and performances of novel biobased integral solution-polymerized styrene–butadiene rubber with β-myrcene bottlebrush segments. J Mater Sci 55, 16544–16560 (2020). https://doi.org/10.1007/s10853-020-05218-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05218-w

Navigation