Skip to main content
Log in

High-temperature oxidation behaviour of TiAl alloys with Co addition

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The challenge of enhancing the high-temperature oxidation resistance of TiAl alloys is hereby addressed by Co addition. Isothermal oxidation tests were conducted on the newly designed TiAl-Co alloys in laboratory air at 900 °C up to 100 h. Sintered microstructure, oxidation kinetics, scale structure, spallation resistance and oxidation mechanisms were systematically investigated. Results show that the original sintered microstructure of TiAl alloys mainly consists of matrix phases α2-Ti3Al/γ-TiAl lamellae, while the Co addition leads to the formation of the two additional Co-rich phases of CoAl2Ti and Ti (Al, Co, Cr and Nb) at grain boundaries. The Co-doped TiAl alloys exhibit an improved high-temperature oxidation resistance compared with the Co-free alloy. The presence of the Co-rich phases network along the grain boundaries and Co-rich layer at the scale/substrate interface can hinder the inward diffusion of oxygen and the outward diffusion of Ti and Al, thereby suppressing the growth of oxide scale and improving the spallation resistance of TiAl alloys. As a result, the TiAl-3Co alloy possesses excellent oxidation resistance, with the minimum mass gain of 4.08 mg/cm2, thinnest scale thickness of 17.8 μm and without surface spallation or crack formation after isothermal oxidation for 100 h. This result would pave the way for designing high-temperature oxidation-resistant TiAl-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Chen G, Peng YB, Zheng G, Qi ZX, Wang MZ, Yu HC, Dong CL, Liu CT (2016) Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat Mater 15:876–881

    CAS  Google Scholar 

  2. Wu LK, Wu JJ, Wu WY, Cao FH, Jiang MY (2020) Sol-gel-based coatings for oxidation protection of TiAl alloys. J Mater Sci 55:6330–6351. https://doi.org/10.1007/s10853-020-04466-0

    Article  CAS  Google Scholar 

  3. Edwards TEJ, Gioacchino FD, Goodfellow AJ, Mohanty G, Wehrs J, Michler J, Clegg WJ (2019) Deformation of lamellar γ-TiAl below the general yield stress. Acta Mater 163:122–139

    CAS  Google Scholar 

  4. Han XL, Liu P, Sun DL, Wang Q (2019) Quantifying the role of interface atomic structure in the compressive response of Ti2AlN/TiAl composite using MD simulations. J Mater Sci 54:5536–5550. https://doi.org/10.1007/s10853-018-03237-2

    Article  CAS  Google Scholar 

  5. Yang WP, Li JR, Liu SZ, Shi ZX, Zhao JQ, Wang XG (2019) Orientation dependence of transverse tensile properties of nickel-based third generation single crystal superalloy DD9 from 760 to 1100°C. Trans Nonferrous Met Soc China 29:558–568

    CAS  Google Scholar 

  6. Xia Y, Schaffer GB, Qian M (2013) The effect of a small addition of nickel on the sintering, sintered microstructure, and mechanical properties of Ti-45Al-5Nb-0.2C-0.2B alloy. J Alloy Compd 578:195–201

    CAS  Google Scholar 

  7. Yang G, Kou H, Yang J, Li J, Fu H (2016) Microstructure control of Ti-45Al-8.5Nb-(W, B, Y) alloy during the solidification process. Acta Mater 112:121–131

    CAS  Google Scholar 

  8. Soyama J, Oehring M, Limberg W, Ebel T, Kainer KU, Pyczak F (2015) The effect of zirconium addition on sintering behaviour, microstructure and creep resistance of the powder metallurgy processed alloy Ti-45Al-5Nb-0.2B-0.2C. Mater Des 84:87–94

    CAS  Google Scholar 

  9. Lu X, He XB, Zhang B, Zhang L, Qu XH, Guo ZX (2009) Microstructure and mechanical properties of a spark plasma sintered Ti-45Al-8.5Nb-0.2 W-0.2B-0.1Y alloy. Intermetallics 17:840–846

    CAS  Google Scholar 

  10. Soyama J, Oehring M, Ebel T, Kainer KU, Pyczak F (2017) Sintering behavior and microstructure formation of titanium aluminide alloys processed by metal injection molding. JOM 69:676–682

    CAS  Google Scholar 

  11. Zhang HM, He XB, Qu XH, Zhao LM (2009) Microstructure and mechanical properties of high Nb containing TiAl alloy parts fabricated by metal injection molding. Mater Sci Eng, A 526:31–37

    Google Scholar 

  12. Reddy RG, Wen X, Divakar M (2001) Isothermal oxidation of TiAl alloy. Metall Mater Trans A 32:2357–2361

    Google Scholar 

  13. Tang SQ, Feng C, Shen J (2020) Enhanced oxidation resistance of TiAlNbCr processed by isothermal forging. J Alloy Compd 813:152174

    CAS  Google Scholar 

  14. Pilone D, Felli F, Brotzu A (2013) High temperature oxidation behaviour of TiAl-Cr-Nb-Mo alloys. Intermetallics 43:131–137

    CAS  Google Scholar 

  15. Ping FP, Hu QM, Bakulin AV, Kulkov SE, Yang R (2016) Alloying effects on properties of Al2O3 and TiO2 in connection with oxidation resistance of TiAl. Intermetallics 68:57–62

    CAS  Google Scholar 

  16. Song Y, Xing FJ, Dai JH, Yang R (2014) First-principles study of influence of Ti vacancy and Nb dopant on the bonding of TiAl/TiO2 interface. Intermetallics 49:1–6

    CAS  Google Scholar 

  17. Gong X, Chen RR, Fang HZ, Ding HS, Guo JJ, Su YQ, Fu HZ (2017) Synergistic effect of B and Y on the isothermal oxidation behavior of TiAl-Nb-Cr-V alloy. Corros Sci 131:376–385

    Google Scholar 

  18. Xiong HP, Li XH, Mao W, Li JP, Ma WL, Chen YY (2003) Improvement of high-temperature oxidation resistance of TiAl-based alloy by silconizing treatment. Acta Metall Sin 39:66–70

    CAS  Google Scholar 

  19. Lee DB, Habazaki H, Kawashima A, Hashimoto K (2000) High temperature oxidation of a Nb-Al-Si coating sputter-deposited on titanium. Corros Sci 42:721–729

    CAS  Google Scholar 

  20. Zhou CG, Yang Y, Gong SK, Xu HB (2001) Effect of Ti-Al-Cr coatings on the high temperature oxidation behavior of TiAl alloys. Mater Sci Eng, A 307:182–187

    Google Scholar 

  21. Stahl AE, Eilers C, Laska N, Braun R (2013) Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti-Al-Cr-Y coatings at 600 and 700°C in air. Surf Coat Technol 223:24–31

    Google Scholar 

  22. Yang X, Jiang ZP, Hao GJ, Liang YF, Ding XF, Lin JP (2018) Ni-doped Al2O3 coatings prepared by cathode plasma electrolysis deposition on Ti-45Al-8.5Nb alloys. Appl Surf Sci 455:144–152

    CAS  Google Scholar 

  23. Wu LK, Wu WY, Song JL, Hou GY, Cao HZ, Tang YP, Zheng GQ (2018) Enhanced high temperature oxidation resistance for γ-TiAl alloy with electrodeposited SiO2 film. Corros Sci 140:388–401

    CAS  Google Scholar 

  24. Wang BY, Li ZX, Yan P, Du JH, Ji SC (2008) Microstructure and inoxidizability of TiN/TiAlN coating on TC4 by arc ion plating. Titan Ind Prog 25:32–36

    Google Scholar 

  25. Dai JJ, Zhu JY, Chen CZ, Weng F (2016) High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: a review. J Alloy Compd 685:784–798

    CAS  Google Scholar 

  26. Dadé M, Esin VA, Nazé L, Sallot P (2019) Short- and long-term oxidation behaviour of an advanced Ti2AlNb alloy. Corros Sci 148:379–387

    Google Scholar 

  27. Huang Y, Peng X, Dong Z, Cui Y (2018) Thermal growth of exclusive alumina scale on a TiAl based alloy: shot peening effect. Corros Sci 143:76–83

    CAS  Google Scholar 

  28. Lu W, Chen CL, He LL, Wang FH, Lin JP, Chen GL (2008) (S)TEM study of different stages of Ti-45Al-8Nb-0.2 W-0.2B-0.02Y alloy oxidation at 900°C. Corros Sci 50:978–988

    CAS  Google Scholar 

  29. Kim D, Seo D, Kim SW, Kim S, Keum D, Hong J (2016) Cyclic oxidation behaviors of TiAl-Nb-Si-based alloys. Oxid Met 86:417–430

    CAS  Google Scholar 

  30. Shida Y, Anada H (1996) The effect of various ternary additives on the oxidation behavior of TiAl in high temperature air. Oxid Met 45:197–218

    CAS  Google Scholar 

  31. Wu Y, Hwang SK, Nam SW, Kim NJ (2003) The effect of yttrium addition on the oxidation resistance of EPM TiAl-based intermetallics. Scr Mater 48:1655–1660

    CAS  Google Scholar 

  32. Wu Y, Hagihara K, Umakoshi Y (2004) Influence of Y-addition on the oxidation behavior of Al-rich γ-TiAl alloys. Intermetallics 12:519–532

    CAS  Google Scholar 

  33. Guo H, Zhang T, Wang S, Gong S (2011) Effect of Dy on oxide scale adhesion of NiAl coatings at 1200 & #xB0;C. Corros Sci 53:2228–2232

    CAS  Google Scholar 

  34. Pan Y, Lu X, Hayat MD, Yang F, Liu CC, Li Y, Li XY, Xu W, Qu XH, Cao P (2020) Effect of Sn addition on the high-temperature oxidation behavior of high Nb-containing TiAl alloys. Corros Sci 166:108449

    CAS  Google Scholar 

  35. Pan Y, Lu X, Liu CC, Sun JZ, Tong JB, Xu W, Qu XH (2018) Effect of Sn addition on densification and mechanical properties of sintered TiAl base alloys. Acta Metall Sin 54:93–99

    CAS  Google Scholar 

  36. Xia Y, Yu P, Schaffer GB, Qian M (2013) Cobalt-doped Ti-48Al-2Cr-2Nb alloy fabricated by cold compaction and pressureless sintering. Mater Sci Eng, A 574:176–185

    CAS  Google Scholar 

  37. Tetsui T, Miura Y (2002) Heat-resistant cast TiAl alloy for passenger vehicle turbochargers. Tech Rev 39:1–5

    Google Scholar 

  38. Pan Y, Xiao SQ, Lu X, Zhou C, Li Y, Liu ZW, Liu BW, Xu W, Jia CC, Qu XH (2019) Fabrication, mechanical properties and electrical conductivity of Al2O3 reinforced Cu/CNTs composites. J Alloy Compd 782:1015–1023

    CAS  Google Scholar 

  39. Qu SJ, Tang SQ, Feng AH, Feng C, Shen J, Chen DL (2018) Microstructural evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy. Acta Mater 148:300–310

    CAS  Google Scholar 

  40. Zhao Q, Liu HQ, Wu CP, Li NN, Jiang Y, Yi DQ (2018) Preferential oxidation of intermetallic compounds in Ag-2Sn-4La alloy. Corros Sci 143:177–186

    CAS  Google Scholar 

  41. Lu X, He XB, Zhang B, Qu XH, Zhang L, Guo ZX, Tian JJ (2009) High-temperature oxidation behavior of TiAl-based alloys fabricated by spark plasma sintering. J Alloy Compd 478:220–225

    CAS  Google Scholar 

  42. Xiang LL, Zhao LL, Wang YL, Zhang LQ, Lin JP (2012) Synergistic effect of Y and Nb on the high temperature oxidation resistance of high Nb containing TiAl alloys. Intermetallics 27:6–13

    CAS  Google Scholar 

  43. Kofstad P (1966) High temperature oxidation of metals. Wiley, Hoboken, pp 100–103

    Google Scholar 

  44. Data come from the database of HSC 6.0

  45. Jiang HR, Hirohasi M, Lu Y, Imanari H (2002) Effect of Nb on the high temperature oxidation of Ti-(0-50 at.%)Al. Scr Mater 46:639–643

    CAS  Google Scholar 

  46. Neelam NS, Banumathy S, Bhattacharjee A, Gvs NR, Zafir MA (2020) Comparison of the isothermal and cyclic oxidation behavior of Cr and Mo containing γ-TiAlNb alloys. Corros Sci 163:108300

    CAS  Google Scholar 

  47. Dai JJ, Li SY, Zhang HX, Yu HJ, Chen CZ, Li Y (2018) Microstructure and high-temperature oxidation resistance of Ti-Al-Nb coatings on a Ti-6Al-4 V alloy fabricated by laser surface alloying. Surf Coat Technol 344:479–488

    CAS  Google Scholar 

  48. Villars P, Prince A, Okamoto H (1995) Handbook of Ternary Alloy Phase Diagrams. ASM International Society, Ohio

    Google Scholar 

  49. Lin JP, Zhao LL, Li GY, Zhang LQ, Song XP, Ye F, Chen GL (2011) Effect of Nb on oxidation behavior of high Nb containing TiAl alloys. Intermetallics 19:131–136

    CAS  Google Scholar 

  50. Zhao LL, Li GY, Zhang LQ, Lin JP, Song XP, Ye F, Chen GL (2010) Influence of Y addition on the long time oxidation behaviors of high Nb containing TiAl alloys at 900°C. Intermetallics 18:1586–1596

    CAS  Google Scholar 

  51. Xu YX, Lu JT, Li WY, Yang XW (2018) Oxidation behaviour of Nb-rich Ni-Cr-Fe alloys: role and effect of carbides precipitates. Corros Sci 140:252–259

    CAS  Google Scholar 

  52. Dai JH, Song Y, Yang R (2017) Influence of alloying elements on stability and adhesion ability of TiAl/TiO2 interface by first-principles calculations. Intermetallics 85:80–89

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51874037 and No. 51922004) and Fundamental Research Funds for the Central Universities (FRF-TP-19005C1Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Lu.

Additional information

Handling Editor: David Balloy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Lu, X., Hui, T. et al. High-temperature oxidation behaviour of TiAl alloys with Co addition. J Mater Sci 56, 815–827 (2021). https://doi.org/10.1007/s10853-020-05269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05269-z

Navigation