Skip to main content
Log in

Polymeric micelles for pulmonary drug delivery: a comprehensive review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Respiratory diseases have remained one of the most common diseases worldwide, in which oral and intravenous administration are the most common treatment routes. However, these administrative routes face various difficulties in reaching local pulmonary targets, possessing low efficacy, and have high risk of systemic side effects. To solve these issues, polymeric micelles represent an effective approach. These nano-ranged delivery systems can encapsulate and protect poorly water-soluble drugs, enhance drug targeting to the lung, reduce side effects, and improve drug efficacy via inhalation route. In this review, the importance of rational design was highlighted by summarizing the recent progress on the development of polymeric micelles in pulmonary delivery. Emphasis is also placed on the different types and preparations, as well as ideal properties and advantages of polymeric micelles for pulmonary route.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Siddharthan T et al (2019) Prevalence of chronic respiratory disease in urban and rural Uganda. Bull World Health Organ 97:318–327

    Google Scholar 

  2. Wright J, Brocklebank D, Ram F (2002) Inhaler devices for the treatment of asthma and chronic obstructive airways disease (COPD). Qual Saf Health care 11(4):376–382

    CAS  Google Scholar 

  3. Mash B, Bheekie A, Jones PW (2001) Inhaled vs oral steroids for adults with chronic asthma. Cochrane Database Syst Rev (1): Cd002160

  4. Jones H, Rowland-Yeo K (2013) Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet Syst Pharmacol 2:e63

    Google Scholar 

  5. Malamed SF (2010) Intravenous sedation. In: Malamed SF (ed) Sedation (Fifth edition). Mosby, Saint Louis, pp 269–270

    Google Scholar 

  6. Labiris NR, Dolovich MB (2003) Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 56(6):588–599

    CAS  Google Scholar 

  7. Brain JD (2007) Inhalation, deposition, and fate of insulin and other therapeutic proteins. Diabetes Technol Ther 9(Suppl 1):S4–s15

    CAS  Google Scholar 

  8. Santos Cavaiola T, Edelman S (2014) Inhaled insulin: a breath of fresh air? a review of inhaled insulin. Clin Ther 36(8):1275–1289

    CAS  Google Scholar 

  9. Newman SP (2017) Drug delivery to the lungs: challenges and opportunities. Ther Deliv 8(8):647–661

    CAS  Google Scholar 

  10. Bustamante-Marin XM, Ostrowski LE (2017) Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol 9(4):a028241

    Google Scholar 

  11. Pellosi DS et al (2018) In vitro/in vivo investigation on the potential of Pluronic® mixed micelles for pulmonary drug delivery. Eur J Pharm Biopharm 130:30–38

    CAS  Google Scholar 

  12. Dolovich MB, Dhand R (2011) Aerosol drug delivery: developments in device design and clinical use. Lancet 377(9770):1032–1045

    CAS  Google Scholar 

  13. Amiji MM (ed) (2007) Nanotechnology for cancer therapy. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  14. Kwon GS, Kataoka K (1995) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16(2–3):295–309

    CAS  Google Scholar 

  15. Mansour HM, Rhee Y-S, Wu X (2009) Nanomedicine in pulmonary delivery. Int J Nanomed 4:299

    CAS  Google Scholar 

  16. Fernanda A et al (2011) Micelle-based systems for pulmonary drug delivery and targeting. Drug Deliv Letters 1(2):171–185

    Google Scholar 

  17. Kaur G et al (2012) Advances in pulmonary delivery of nanoparticles. Artif Cells Blood Substit Biotechnol 40(1–2):75–96

    CAS  Google Scholar 

  18. Lavasanifar A, Samuel J, Kwon GS (2002) Poly (ethylene oxide)-block-poly (L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 54(2):169–190

    CAS  Google Scholar 

  19. Vert M et al (2012) Terminology for biorelated polymers and applications. IUPAC Recommen 84(2):377

    CAS  Google Scholar 

  20. Nishiyama N, Takemoto H (2015) Polymeric micelles. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin, pp 1958–1963

    Google Scholar 

  21. Lu Y, Park K (2013) Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 453(1):198–214

    CAS  Google Scholar 

  22. Cabral H et al (2018) Block copolymer micelles in nanomedicine applications. Chem Rev 118:6844–6892

    CAS  Google Scholar 

  23. Sze LP et al (2019) Oral delivery of paclitaxel by polymeric micelles: a comparison of different block length on uptake, permeability and oral bioavailability. Colloids Surf, B 184:110554

    CAS  Google Scholar 

  24. Šmejkalová D et al (2017) Hyaluronan polymeric micelles for topical drug delivery. Carbohydr Polym 156:86–96

    Google Scholar 

  25. Jaiswal M, Kumar M, Pathak K (2015) Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Colloids Surf, B 130:23–30

    CAS  Google Scholar 

  26. Wang F et al (2020) Facile nose-to-brain delivery of rotigotine-loaded polymer micelles thermosensitive hydrogels: in vitro characterization and in vivo behavior study. Int J Pharm 577:119046

    CAS  Google Scholar 

  27. Triolo D et al (2017) Polymeric drug delivery micelle-like nanocarriers for pulmonary administration of beclomethasone dipropionate. Colloids Surf, B 151:206–214

    CAS  Google Scholar 

  28. Jones M-C, Leroux J-C (1999) Polymeric micelles – a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48(2):101–111

    CAS  Google Scholar 

  29. Nagarajan R (1996) Solubilization of Hydrophobic Substances by Block Copolymer Micelles in Aqeous Solutions. In: Webber SE, Munk P, Tuzar Z (eds) Solvents and self-organization of Polymers. Springer, Dordrecht, pp 121–165

    Google Scholar 

  30. Inamdar N, Mourya VK (2011) Polymeric micelles: general considerations and their applications. Indian J Pharma Educ Res 45:128–138

    Google Scholar 

  31. Kedar U et al (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 6(6):714–729

    CAS  Google Scholar 

  32. Nagaich DU et al (2013) Polymeric micelles: potential drug delivery devices. Indonesian J. Pharm 24:223–238

    Google Scholar 

  33. Bouchemal K et al (2009) A concise analysis of the effect of temperature and propanediol-1, 2 on Pluronic F127 micellization using isothermal titration microcalorimetry. J Colloid Interface Sci 338:169–176

    CAS  Google Scholar 

  34. Abedanzadeh M et al (2020) Curcumin loaded polymeric micelles of variable hydrophobic lengths by RAFT polymerization: preparation and in vitro characterization. J Drug Deliv Sci Technol 58:101793

    CAS  Google Scholar 

  35. Ranger M et al (2001) From well-defined diblock copolymers prepared by a versatile atom transfer radical polymerization method to supramolecular assemblies. J Polym Sci, Part A: Polym Chem 39:3861–3874

    CAS  Google Scholar 

  36. Zhang J, Ma P (2008) Polymeric Core-shell assemblies mediated by host-guest interactions: versatile nanocarriers for drug delivery. Angew Chem 121:982–986

    Google Scholar 

  37. Kim JO, Kabanov AV, Bronich TK (2009) Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J Control Release 138(3):197–204

    CAS  Google Scholar 

  38. Jeong Y-I et al (2006) Polyion complex micelles composed of all-trans retinoic acid and poly(ethylene glycol)-grafted chitosan. J Pharm Sci 95:2348–2360

    CAS  Google Scholar 

  39. Moughton A, O’Reilly R (2008) Noncovalently connected micelles, nanoparticles, and metal-functionalized nanocages using supramolecular self-assembly. J Am Chem Soc 130:8714–8725

    CAS  Google Scholar 

  40. Yang C et al (2012) The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles. Biomaterials 33(10):2971–2979

    CAS  Google Scholar 

  41. Wang M et al (2001) Noncovalently connected polymeric micelles based on a homopolymer pair in solutions. Macromolecules 34:7172–7178

    CAS  Google Scholar 

  42. Tang B et al (2018) Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. J Control Release 279:147–156

    CAS  Google Scholar 

  43. Ahn J et al (2015) Antibody fragment-conjugated polymeric micelles incorporating platinum drugs for targeted therapy of pancreatic cancer. Biomaterials 39:23–30

    CAS  Google Scholar 

  44. Binkhathlan Z et al (2012) Encapsulation of P-glycoprotein inhibitors by polymeric micelles can reduce their pharmacokinetic interactions with doxorubicin. Eur J Pharm Biopharm 81(1):142–148

    CAS  Google Scholar 

  45. Kumari P et al (2018) Transferrin-anchored poly(lactide) based micelles to improve anticancer activity of curcumin in hepatic and cervical cancer cell monolayers and 3D spheroids. Int J Biol Macromol 116:1196–1213

    CAS  Google Scholar 

  46. Shi H et al (2020) Folate decorated polymeric micelles for targeted delivery of the kinase inhibitor dactolisib to cancer cells. Int J Pharm 582:119305

    CAS  Google Scholar 

  47. Shuai X et al (2004) Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug Chem 15(3):441–448

    CAS  Google Scholar 

  48. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003

    CAS  Google Scholar 

  49. Sarisozen C et al (2019) 10 - Stimuli-responsive polymeric micelles for extracellular and intracellular drug delivery. In: Makhlouf ASH, Abu-Thabit NY (eds) Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Woodhead Publishing, India, pp 269–304

    Google Scholar 

  50. Zhou Q et al (2018) Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomed 13:2921–2942

    CAS  Google Scholar 

  51. Taylor MJ, Tomlins P, Sahota TS (2017) Thermoresponsive Gels. Gels 3(1):4

    Google Scholar 

  52. Talelli M, Hennink WE (2011) Thermosensitive polymeric micelles for targeted drug delivery. Nanomedicine 6(7):1245–1255

    CAS  Google Scholar 

  53. Liu B et al (2008) The antitumor effect of novel docetaxel-loaded thermosensitive micelles. Eur J Pharm Biopharm 69(2):527–534

    CAS  Google Scholar 

  54. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670

    CAS  Google Scholar 

  55. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32(8):962–990

    CAS  Google Scholar 

  56. Gu J et al (2008) pH-triggered reversible “stealth” polycationic micelles. Biomacromol 9(1):255–262

    CAS  Google Scholar 

  57. Lee ES et al (2003) Poly(l-histidine)–PEG block copolymer micelles and pH-induced destabilization. J Control Release 90(3):363–374

    CAS  Google Scholar 

  58. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212

    CAS  Google Scholar 

  59. Kang Y et al (2018) Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater 68:137–153

    CAS  Google Scholar 

  60. Zhang J, Ma PX (2009) Polymeric core-shell assemblies mediated by host-guest interactions: versatile nanocarriers for drug delivery. Angew Chem Int Ed Engl 48(5):964–968

    CAS  Google Scholar 

  61. Sang X et al (2018) Preparation of pH/redox dual responsive polymeric micelles with enhanced stability and drug controlled release. Mater Sci Eng, C 91:727–733

    CAS  Google Scholar 

  62. Pourjavadi A, Kohestanian M, Streb C (2020) pH and thermal dual-responsive poly(NIPAM-co-GMA)-coated magnetic nanoparticles via surface-initiated RAFT polymerization for controlled drug delivery. Mater Sci Eng, C 108:110418

    CAS  Google Scholar 

  63. Zhang L et al (2017) Enzyme and redox dual-triggered intracellular release from actively targeted polymeric micelles. ACS Appl Mater Interfaces 9(4):3388–3399

    CAS  Google Scholar 

  64. Huang X et al (2013) Triple-stimuli (pH/thermo/reduction) sensitive copolymers for intracellular drug delivery. J Mater Chem B 1(13):1860–1868

    CAS  Google Scholar 

  65. Schrager J (1970) The chemical composition and function of gastrointestinal mucus. Gut 11(5):450–456

    CAS  Google Scholar 

  66. Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013:340315

    Google Scholar 

  67. Andrade F et al (2016) Pharmacological and toxicological assessment of innovative self-assembled polymeric micelles as powders for insulin pulmonary delivery. Nanomed 11(17):2305–2317

    CAS  Google Scholar 

  68. Tian Y et al (2007) Synthesis and aggregation behavior of pluronic F87/poly(acrylic acid) block copolymer in the presence of doxorubicin. Langmuir 23(5):2638–2646

    CAS  Google Scholar 

  69. Mebarek N et al (2013) Polymeric micelles based on poly(methacrylic acid) block-containing copolymers with different membrane destabilizing properties for cellular drug delivery. Int J Pharm 454(2):611–620

    CAS  Google Scholar 

  70. Sosnik A, Menaker Raskin M (2015) Polymeric micelles in mucosal drug delivery: challenges towards clinical translation. Biotechnol Adv 33(6, Part 3):1380–1392

    CAS  Google Scholar 

  71. Bromberg L (1998) Properties of Aqueous Solutions and Gels of Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-g-poly(acrylic acid). J Phys Chem B 102(52):10736–10744

    CAS  Google Scholar 

  72. Triolo D et al (2016) Polymeric drug delivery micelle-like nanocarriers for pulmonary administration of beclomethasone dipropionate. Biointerfaces, Colloids and Surfaces B, p 151

    Google Scholar 

  73. Olmsted SS et al (2001) Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J 81(4):1930–1937

    CAS  Google Scholar 

  74. Maiti S, Chakravorty A, Chowdhury M (2014) Gellan co-polysaccharide micellar solution of budesonide for allergic anti-rhinitis: an in vitro appraisal. Int J Biol Macromol 68:241–246

    CAS  Google Scholar 

  75. Reddy B et al (2015) Polymeric micelles as novel carriers for poorly soluble drugs–a review. J Nanosci Nanotechnol 15:4009–4018

    Google Scholar 

  76. Cagel M et al (2017) Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm 113:211–228

    CAS  Google Scholar 

  77. Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130(2):98–106

    CAS  Google Scholar 

  78. Chiappetta DA, Sosnik A (2007) Poly (ethylene oxide)–poly (propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 66(3):303–317

    CAS  Google Scholar 

  79. Oh KT, Bronich TK, Kabanov AV (2004) Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. J Control Release 94(2–3):411–422

    CAS  Google Scholar 

  80. Yokoyama M (2010) Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv 7(2):145–158

    CAS  Google Scholar 

  81. Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomed Nanotechnol Biol Med 6(1):9–24

    CAS  Google Scholar 

  82. Kataoka K et al (2000) Doxorubicin-loaded poly(ethylene glycol)–poly(β-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 64(1):143–153

    CAS  Google Scholar 

  83. Zhang J et al (2009) Anionic poly (lactic acid)-polyurethane micelles as potential biodegradable drug delivery carriers. Colloids Surf, A 337(1–3):200–204

    CAS  Google Scholar 

  84. Djordjevic J, Michniak B, Uhrich KE (2003) Amphiphilic star-like macromolecules as novel carriers for topical delivery of nonsteroidal anti-inflammatory drugs. AAPs Pharmsci 5(4):1–12

    Google Scholar 

  85. Patil YB et al (2009) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30(5):859–866

    CAS  Google Scholar 

  86. Fournier E et al (2004) A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm Res 21:962–968

    CAS  Google Scholar 

  87. Lavasanifar A, Samuel J, Kwon GS (2002) The effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly (ethylene oxide)-block-poly (N-hexyl stearate-L-aspartamide). J Control Release 79(1–3):165–172

    CAS  Google Scholar 

  88. Zhang X et al (1997) An investigation of the antitumour activity and biodistribution of polymeric micellar paclitaxel. Cancer Chemother Pharmacol 40(1):81–86

    CAS  Google Scholar 

  89. Zhang X, Jackson JK, Burt HM (1996) Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int J Pharm 132(1–2):195–206

    CAS  Google Scholar 

  90. Seo MH, Lee SW (2011) Preparation method of polymeric micellar nanoparticles composition containing a poorly water-soluble drug. Google Patents

  91. Allen C, Maysinger D, Eisenberg A (1999) Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf, B 16(1–4):3–27

    CAS  Google Scholar 

  92. Yu B et al (1998) Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. J Control Release 53(1–3):131–136

    CAS  Google Scholar 

  93. Rapoport NY et al (1999) Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. J Control Release 58(2):153–162

    CAS  Google Scholar 

  94. Fournier E et al (2004) A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm Res 21(6):962–968

    CAS  Google Scholar 

  95. Lee SC et al (2007) Hydrotropic polymeric micelles for enhanced paclitaxel solubility: in vitro and in vivo characterization. Biomacromol 8(1):202–208

    CAS  Google Scholar 

  96. Le Garrec D et al (2004) Poly (N-vinylpyrrolidone)-block-poly (D, L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control Release 99(1):83–101

    Google Scholar 

  97. Aliabadi H, Lavasanifar A (2006) Polymeric micelles for drug delivery. Expert Opin Drug Deliv 3:139–162

    CAS  Google Scholar 

  98. Baginski L et al (2012) In vitro and in vivo characterisation of PEG-Lipid-based micellar complexes of salmon calcitonin for pulmonary delivery. Pharm Res 29(6):1425–1434

    CAS  Google Scholar 

  99. Vakilzadeh H, Varshosaz J, Minaiyan M (2018) Pulmonary delivery of triptorelin loaded in pluronic based nanomicelles in rat model. Current Drug Deliv 15:630–640

    CAS  Google Scholar 

  100. Kahraman E et al (2015) Polyethylenimine modified and non-modified polymeric micelles used for nasal administration of carvedilol. J Biomed Nanotechnol 11:890–899

    CAS  Google Scholar 

  101. Kim G et al (2018) Self-assembled polymeric micelles for combined delivery of anti-inflammatory gene and drug to the lungs by inhalation. Nanoscale 10(18):8503–8514

    CAS  Google Scholar 

  102. Andrade F et al (2016) Pharmacological and toxicological assessment of innovative self-Assembled polymeric micelles as powders for insulin pulmonary delivery. Nanomedicine 11:2305–2317

    CAS  Google Scholar 

  103. Farhangi M et al (2019) Optimization of a dry powder inhaler of ciprofloxacin-loaded polymeric nanomicelles by spray drying process. Pharm Dev Technol 24(5):584–592

    CAS  Google Scholar 

  104. Gilani K et al (2011) Development of respirable nanomicelle carriers for delivery of Amphotericin B by jet nebulization. J Pharm Sci 100(1):252–259

    CAS  Google Scholar 

  105. Sahib MN et al (2011) Rehydrated sterically stabilized phospholipid nanomicelles of budesonide for nebulization: physicochemical characterization and in vitro, in vivo evaluations. Int J Nanomed 6:2351–2366

    CAS  Google Scholar 

  106. Yang Y-T et al (2010) Spray-dried microparticles containing polymeric micelles encapsulating hematoporphyrin. AAPS J 12(2):138–146

    CAS  Google Scholar 

  107. Li Y et al (2017) Antigen-loaded polymeric hybrid micelles elicit strong mucosal and systemic immune responses after intranasal administration. J Control Release 262:151–158

    CAS  Google Scholar 

  108. Gaber NN et al (2006) Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate. J Nanosci Nanotechnol 6(9–10):3095–3101

    CAS  Google Scholar 

  109. Hu X et al (2014) Pulmonary delivered polymeric micelles–pharmacokinetic evaluation and biodistribution studies. Eur J Pharm Biopharm 88(3):1064–1075

    CAS  Google Scholar 

  110. Rosière R et al (2016) Development and evaluation of well-tolerated and tumor-penetrating polymeric micelle-based dry powders for inhaled anti-cancer chemotherapy. Int J Pharm 501(1):148–159

    Google Scholar 

  111. Mathias NR, Hussain MA (2010) Non-invasive systemic drug delivery: developability considerations for alternate routes of administration. J Pharm Sci 99(1):1–20

    CAS  Google Scholar 

  112. Davies C, Muir D (1966) Deposition of inhaled particles in human lungs. Nature 211(5044):90–91

    CAS  Google Scholar 

  113. Jain KK (2008) Drug delivery systems-an overview. Drug delivery systems. Springer, Berlin, pp 1–50

    Google Scholar 

  114. El-Sherbiny IM, El-Baz NM, Yacoub MH (2015) Inhaled nano-and microparticles for drug delivery. Global Cardiol Sci Pract 2015(1):2

    Google Scholar 

  115. Pham DT et al (2020) Comprehensive investigations of fibroin and poly(ethylenimine) functionalized fibroin nanoparticles for ulcerative colitis treatment. J Drug Deliv Sci Technol 57:101484

    CAS  Google Scholar 

  116. Olsson B et al (2011) Pulmonary drug metabolism, clearance, and absorption. In: Smyth H, Hickey A (eds) Controlled pulmonary drug delivery. Springer, Berlin. pp. 21–50

  117. Oberdörster G (1988) Lung clearance of inhaled insoluble and soluble particles. J. Aerosol Med. 1(4):289–330

    Google Scholar 

  118. Parkinson A, Ogilvie BW (2008) Biotransformation of xenobiotics. Casarett and Doull’s Toxicol The Basic Sci Poisons 7:161–304

    Google Scholar 

  119. Campbell S, Smeets N (2019) Drug delivery: localized and systemic therapeutic strategies with polymer systems. In: Jafar Mazumder M, Sheardown H, Al-Ahmed A (eds) Functional polymers. Polymers and polymeric composites: a reference series. Springer, Cham

  120. Bailey MM, Berkland CJ (2009) Nanoparticle formulations in pulmonary drug delivery. Med Res Rev 29(1):196–212

    CAS  Google Scholar 

  121. El-Sherbiny IM, et al (2011) Overcoming lung clearance mechanisms for controlled release drug delivery. In: Smyth H, Hickey A (eds) Controlled pulmonary drug delivery. Springer, Berlin. pp. 101–126

  122. Champion JA, Walker A, Mitragotri S (2008) Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25(8):1815–1821

    CAS  Google Scholar 

  123. Usmani OS et al (2004) Characterization of the generation of radiolabeled monodisperse albuterol particles using the spinning-top aerosol generator. J Nucl Med 45(1):69–73

    Google Scholar 

  124. Pham DT, Saelim N, Tiyaboonchai W (2019) Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy. Colloids Surf, B 181:705–713

    CAS  Google Scholar 

  125. Pham DT, Saelim N, Tiyaboonchai W (2020) Paclitaxel loaded EDC-crosslinked fibroin nanoparticles: a potential approach for colon cancer treatment. Drug Deliv Transl Res 10(2):413–424

    CAS  Google Scholar 

  126. Pham DT et al (2020) Crosslinked fibroin nanoparticles: investigations on biostability, cytotoxicity, and cellular internalization. Pharm (Basel, Switzerland) 13(5):86

    CAS  Google Scholar 

  127. Yang W, Peters JI, Williams RO III (2008) Inhaled nanoparticles—a current review. Int J Pharm 356(1–2):239–247

    CAS  Google Scholar 

  128. Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25(12):563–570

    CAS  Google Scholar 

  129. Tiano SL, Dalby RN (1996) Comparison of a respiratory suspension aerosolized by an air-jet and an ultrasonic nebulizer. Pharm Dev Technol 1(3):261–268

    CAS  Google Scholar 

  130. Finlay WH (2001) The mechanics of inhaled pharmaceutical aerosols: an introduction. Academic Press, Cambridge

    Google Scholar 

  131. Brocklebank D, et al (2001) Comparison of the effectiveness of inhaler devices in asthma and chronic obstructive airways disease: a systematic review of the literature, in Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet]. 2001, Centre for Reviews and Dissemination (UK)

  132. Siddiqui MAA, Plosker GL (2005) The Novolizer®. Treatment Respir Med 4(1):63–69

    CAS  Google Scholar 

  133. Köhler D (2003) Novolizer®: the new technology for the management of asthma therapy. Current Opin Pulmonary Med 9:S11–S16

    Google Scholar 

  134. Mosén K et al (2005) Particle formation and capture during spray drying of inhalable particles. Pharm Dev Technol 9(4):409–417

    Google Scholar 

  135. Duddu SP et al (2002) Improved lung delivery from a passive dry powder inhaler using an engineered PulmoSphere® powder. Pharm Res 19(5):689–695

    CAS  Google Scholar 

  136. Yamamoto H et al (2007) Engineering of poly (DL-lactic-co-glycolic acid) nanocomposite particles for dry powder inhalation dosage forms of insulin with the spray-fluidized bed granulating system. Adv Powder Technol 18(2):215–228

    CAS  Google Scholar 

  137. Chaubal MV, Popescu C (2008) Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharm Res 25(10):2302–2308

    CAS  Google Scholar 

  138. Son YJ, McConville JT (2012) Preparation of sustained release rifampicin microparticles for inhalation. J Pharm Pharmacol 64(9):1291–1302

    CAS  Google Scholar 

  139. White S et al (2005) EXUBERA: pharmaceutical development of a novel product for pulmonary delivery of insulin. Diabetes Technol Ther 7(6):896–906

    CAS  Google Scholar 

  140. Gilani K et al (2005) The effect of water to ethanol feed ratio on physical properties and aerosolization behavior of spray dried cromolyn sodium particles. J Pharm Sci 94(5):1048–1059

    CAS  Google Scholar 

  141. Andrade F et al (2011) Micelle-based systems for pulmonary drug delivery and targeting. Drug Delivery Letters 1(2):171–185

    CAS  Google Scholar 

  142. Hirsjärvi S, Peltonen L, Hirvonen J (2009) Effect of sugars, surfactant, and tangential flow filtration on the freeze-drying of poly (lactic acid) nanoparticles. AAPS PharmSciTech 10(2):488–494

    Google Scholar 

  143. Suk JS et al (2009) The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 30(13):2591–2597

    CAS  Google Scholar 

  144. Mert O et al (2012) A poly (ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles. J Control Release 157(3):455–460

    CAS  Google Scholar 

  145. Suk JS et al (2014) Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. J Control Release 178:8–17

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waree Tiyaboonchai.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, D.T., Chokamonsirikun, A., Phattaravorakarn, V. et al. Polymeric micelles for pulmonary drug delivery: a comprehensive review. J Mater Sci 56, 2016–2036 (2021). https://doi.org/10.1007/s10853-020-05361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05361-4

Navigation