Skip to main content

Advertisement

Log in

Bioceramic powders for bone regeneration modified by high-pressure CO2 process

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Non-stoichiometric nanocrystalline apatites present enhanced bioactivity compared to stoichiometric hydroxyapatite. The purpose of this work was to modify the calcium phosphates (CaP) generally used to prepare bioactive ceramics in the aim of obtaining a biomimetic apatite powder. Hydroxyapatite (HA) powder, amorphous tricalcium phosphate (amTCP) powder and a blend of these two were modified by means of an innovative, simple, “green” carbonation process, involving water and high-pressure CO2 (80 bar). This process induced a modification of the CaP, which is sensitive to the environment in which it is located and, in particular, to the pH variations that occur during the treatment phase (decrease in the pH) and during the degassing phase (return to neutral pH). FTIR and Raman spectroscopy, XRD and SEM analyses showed that, depending on the type of initial CaP powder, high-pressure CO2 treatment led to the formation of different types of calcium phosphate phases. This process allowed partial dissolution of the initial powder, mainly of TCP when present, and precipitation of a new CaP phase. HA and HA/amTCP powders were transformed into a mixture of OCP and immature carbonated apatite (PCCA) phases, including OCP maturation/transformation into PCCA. In the case of amTCP powder, a DCPD phase was also present due to the high TCP solubility and an earlier precipitation during the degassing step. This work shows the great potential of such an innovative low-temperature and high-pressure process to transform HA, HA/TCP and TCP powder into bioactive biphasic ceramics composed of OCP and PCCA similar to bone mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. LeGeros RZ (1981) Apatites in biological systems. Prog Cryst Growth Charact 4:1–45

    Article  CAS  Google Scholar 

  2. Drouet C, Grossin D, Sarda S, Cazalbou S, Rey C (2018) Apatites biomimétiques Des biominéraux aux analogues de synthèse pour le biomédical. Techniques de l’ingénieur Biomatériaux biomécanique 33(IN227):V1

    Google Scholar 

  3. Weiner S, Wagner HD (1998) The material bone: structure–mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  CAS  Google Scholar 

  4. Rey C, Marsan O, Combes C, Drouet C, Grossin D, Sarda S (2014) Characterization of calcium phosphates using vibrational spectroscopies. In: Ben-Nissan B (ed) Advances in calcium phosphate biomaterials. Springer series in biomaterials science and engineering, vol 2. Springer, Berlin, pp 229–266

    Chapter  Google Scholar 

  5. Cazalbou S, Eichert D, Drouet C, Combes C, Rey C (2004) Minéralisations biologiques à base de phosphate de calcium. C R Palevol 3:563–572

    Article  Google Scholar 

  6. Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the v4PO4 domain. Calcif Tissue Int 46:384–394

    Article  CAS  Google Scholar 

  7. Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12:155–163

    Article  CAS  Google Scholar 

  8. S. Cazalbou (2000) Échanges cationiques impliquant des apatites nanocristallines analogues au minéral osseux. PhD dissertation, University of Toulouse

  9. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates, vol 18. Elsevier Science, Amsterdam

    Book  Google Scholar 

  10. Haute Autorité de Santé Substituts osseux Saint-Denis La Plaine : HAS, 2013: 134

  11. Tian J, Tian J (2001) Preparation of porous hydroxyapatite. J Mater Sci 36:3061–3066. https://doi.org/10.1023/A:1017935411108

    Article  CAS  Google Scholar 

  12. Autefage H (2009) Rôle ostéoinducteur d’un revêtement d’apatite carbonatée nanocristalline sur des céramiques de phosphate de calcium biphasique. PhD dissertation, University of Toulouse

  13. Aroso IM, Craveiro R, Rocha A, Dionisio M, Reis RL, Paiva A, Duarte AR (2015) Design of controlled release systems for THEDES—therapeutic deep eutectic solvents, using supercritical fluid technology. Int J Pharm 492:73–79

    Article  CAS  Google Scholar 

  14. Martins M, Baros A, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159

    Article  CAS  Google Scholar 

  15. Duarte ARC, Caridade SG, Mano JF, Reis RL (2009) Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology. Mater Sci Eng C 29:2110–2115

    Article  CAS  Google Scholar 

  16. Wakayama H (2018) CaCO3–polymer nanocomposite prepared with supercritical CO2. Int J Polym Sci. https://doi.org/10.1155/2018/9783941

    Article  Google Scholar 

  17. Duarte ARC, Santo VE, Gomes ME, Reis RL (2018) Supercritical fluid technology as a tool to prepare gradient multifunctional architectures towards regeneration of osteochondral injuries. Adv Exp Med Biol 1058:265–278

    Article  CAS  Google Scholar 

  18. Li W, Yu Q, Wu P (2009) Submicronic calcite particles with controlled morphology tailored by polymer skeletons via carbonation route with compressed or supercritical CO2. Green Chem 11:1541–1549

    Article  CAS  Google Scholar 

  19. Matsuya S, Lin X, Udoh KI, Nakagawa M, Shimogoryo R, Terada Y, Ishikawa K (2007) Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact. J Mater Sci Mater Med 18:1361–1367

    Article  CAS  Google Scholar 

  20. Teir S (2008) Fixation of carbon dioxide by producing carbonates from minerals and steel making slags. PhD dissertation, University of Helsinki

  21. Peng GMC, Crawshaw JP (2013) The pH of CO2-saturated water at temperatures between 308 and 423 K at pressures up to 15 MPa. J Supercrit Fluids 82:129–137

    Article  CAS  Google Scholar 

  22. Barrere F, Van Blitterswijk CA, De Groot K, Layrolle P (2002) Influence of ionic strength and carbonate on the Ca-P coating formation from SBF× 5 solution. Biomaterials 23:1921–1930

    Article  CAS  Google Scholar 

  23. Heughebaert JC (1977) Contribution à l’étude de l’évolution des orthophosphates de calcium précipités amorphes en orthophosphates apatitiques, Doctoral dissertation, University of Toulouse

  24. Vandecandelaere N, Rey C, Drouet C (2012) Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters. J Mater Sci Mater Med 2:2593–2606

    Article  Google Scholar 

  25. Rey C, Renugopalakrishman V, Collins B, Glimcher MJ (1991) Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 49:251–258

    Article  CAS  Google Scholar 

  26. Lin K, Wu C, Chang J (2014) Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater 10:4071–4102

    Article  CAS  Google Scholar 

  27. Cheng X, He Q, Li J, Huang Z, Chi RA (2009) Control of pore size of the bubble-template porous carbonated hydroxyapatite microsphere by adjustable pressure. Cryst Growth Des 9:2770–2775

    Article  CAS  Google Scholar 

  28. Cheng X, Huang Z, Li J, Liu Y, Chen C, Chi R (2010) Self-assembled growth and pore size control of the bubble-template porous carbonated hydroxyapatite microsphere. Cryst Growth Des 10:1180–1188

    Article  CAS  Google Scholar 

  29. Duan YR, Zhang ZR, Wang CY, Chen JY, Zhang XD (2005) Dynamic study of calcium phosphate formation on porous HA/TCP ceramics. J Mater Sci Mater Med 16:795–801

    Article  CAS  Google Scholar 

  30. Heughebaert JC, Nancollas GH (1984) Kinetics of crystallization of octacalcium phosphate. J Phys Chem 88:2478–2481

    Article  CAS  Google Scholar 

  31. Natsuko I, Masanobu K, Setsuaki M, Noriaki W, Koji O (2010) Hydrothermal synthesis and characterization of hydroxyapatite from octacalcium phosphate. J Ceram Soc Jpn 118:762–766

    Article  Google Scholar 

  32. Nývlt J (1995) The Ostwald rule of stages. Cryst Res Technol 30:443–449

    Article  Google Scholar 

  33. Brown WE (1962) Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196:1050–1055

    Article  CAS  Google Scholar 

  34. Cheng P (1987) Formation of octacalcium phosphate and subsequent transformation to hydroxyapatite at low supersaturation: a model for cartilage calcification. Calcif Tissue Int 40:339–343

    Article  CAS  Google Scholar 

  35. Eliaz N, Eliyahu M (2007) Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy. J Biomed Mater Res, Part A 80:621–634

    Article  Google Scholar 

  36. He QJ, Huang ZL (2007) Controlled growth and kinetics of porous hydroxyapatite spheres by a template-directed method. J Cryst Growth 300:460–466

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Federal University of Toulouse and the Région Occitanie (France) for the PhD grant of Clémentine Aubry. We are also grateful to the Teknimed Company for providing HA powder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cazalbou.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aubry, C., Camy, S., Combes, C. et al. Bioceramic powders for bone regeneration modified by high-pressure CO2 process. J Mater Sci 56, 3387–3403 (2021). https://doi.org/10.1007/s10853-020-04476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04476-y

Navigation