Skip to main content
Log in

Preparation of durable, self-cleaning and photocatalytic superhydrophobic Ni3S2 coating on 304 stainless steel surface against contaminations

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Artificial superhydrophobic coatings with various properties have been developed by regulating surface chemical compositions and rough microstructures. Herein, a superhydrophobic Ni3S2 coating was fabricated on 304 stainless steel via combining electrodeposition, solvothermal reaction and chemical modification. Owing to the cooperation of the low surface energy of myristic acid, and rough structure of Ni3S2 nanorods, the coating exhibited remarkable superhydrophobicity with water contact angle (WCA) up to 163 ± 1°. The superhydrophobic coating tightly bonded with the steel substrate could withstand different mechanical damages, and the surface still maintained higher WCA after suffering from tape-peeling, sandpaper abrasion, water droplets impact and sand-flow impingement tests. In addition, the self-cleaning tests verified that the superhydrophobic coating was significantly repellent to different types of contaminations. Moreover, the Ni3S2 coating was capable of degrading methylene blue molecules under UV illumination, thereby restricting the damage of organic contaminations to the surface superhydrophobicity. It is expected that the durable and self-cleaning superhydrophobic coating will be suitable for achieving water-repellent surfaces to meet applications in harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Si Y, Dong Z, Jiang L (2018) Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Cent Sci 4:1102–1112. https://doi.org/10.1021/acscentsci.8b00504

    Article  CAS  Google Scholar 

  2. Wang S, Liu K, Yao X, Jiang L (2015) Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev 115:8230–8293. https://doi.org/10.1021/cr400083y

    Article  CAS  Google Scholar 

  3. Xu S, Wang Q, Wang N, Zheng X (2019) Fabrication of superhydrophobic green surfaces with good self-cleaning, chemical stability and anti-corrosion properties. J Mater Sci 54:13006–13016. https://doi.org/10.1007/s10853-019-03789-x

    Article  CAS  Google Scholar 

  4. Wang H, He M, Liu H, Guan Y (2019) One-step fabrication of robust superhydrophobic steel surfaces with mechanical durability, thermal stability, and anti-icing function. ACS Appl Mater Interf 11:25586–25594. https://doi.org/10.1021/acsami.9b06865

    Article  CAS  Google Scholar 

  5. Zhu H, Duan R, Wang X, Yang J, Wang J, Huang Y, Xia F (2018) Prewetting dichloromethane induced aqueous solution adhered on Cassie superhydrophobic substrates to fabricate efficient fog-harvesting materials inspired by Namib Desert beetles and mussels. Nanoscale 10:13045–13054. https://doi.org/10.1039/C8NR03277G

    Article  CAS  Google Scholar 

  6. Feng L, Zhu Y, Wang J, Shi X (2017) One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance. Appl Surf Sci 422:566–573. https://doi.org/10.1016/j.apsusc.2017.06.066

    Article  CAS  Google Scholar 

  7. Dong X, Gao S, Huang J et al (2019) A self-roughened and biodegradable superhydrophobic coating with UV shielding, solarinduced self-healing and versatile oil-water separation ability. J Mater Chem A 7:2122–2128. https://doi.org/10.1039/C8TA10869B

    Article  CAS  Google Scholar 

  8. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8. https://doi.org/10.1007/s004250050096

    Article  CAS  Google Scholar 

  9. Li W, Wu G, Tan J et al (2019) Facile fabrication of self-healing superhydrophobic nanocomposite films enabled by near-infrared light. J Mater Sci 54:7702–7718. https://doi.org/10.1007/s10853-019-03426-7

    Article  CAS  Google Scholar 

  10. Esteves ACC, Luo Y, Van de Put MWP, Carcouët CCM, De With G (2014) Self-replenishing dual structured superhydrophobic coatings prepared by drop-casting of an all-in-one dispersion. Adv Funct Mater 24:986–992. https://doi.org/10.1002/adfm.201301909

    Article  CAS  Google Scholar 

  11. Shen Y, Xie Y, Tao J, Chen H, Zhu C, Jin M, Lu Y (2019) Rationally designed nanostructure features on superhydrophobic surfaces for enhancing self-propelling dynamics of condensed droplets. ACS Sustain Chem Eng 7:2702–2708. https://doi.org/10.1021/acssuschemeng.8b05780

    Article  CAS  Google Scholar 

  12. Li H, Yu S, Hu J, Yin X (2019) Modifier-free fabrication of durable superhydrophobic electrodeposited Cu-Zn coating on steel substrate with self-cleaning, anti-corrosion and antiscaling properties. Appl Surf Sci 481:872–882. https://doi.org/10.1016/j.apsusc.2019.03.123

    Article  CAS  Google Scholar 

  13. Sun S, Zhu L, Liu X et al (2018) Superhydrophobic shish-kebab membrane with self-cleaning and oil/water separation properties. ACS Sustain Chem Eng 6:9866–9875. https://doi.org/10.1021/acssuschemeng.8b01047

    Article  CAS  Google Scholar 

  14. Yong J, Chen F, Li M, Yang Q, Fang Y, Huo J, Hou X (2017) Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces. J Mater Chem A 5:25249–25257. https://doi.org/10.1039/C7TA07528F

    Article  CAS  Google Scholar 

  15. Khosravi M, Azizian S, Boukherroub R (2019) Efficient oil/water separation by superhydrophobic CuxS coated on copper mesh. Sep Purif Technol 215:573–581. https://doi.org/10.1016/j.seppur.2019.01.039

    Article  CAS  Google Scholar 

  16. Zhou H, Chen R, Liu Q et al (2019) Fabrication of ZnO/epoxy resin superhydrophobic coating on AZ31 magnesium alloy. Chem Eng J 368:261–272. https://doi.org/10.1016/j.cej.2019.02.032

    Article  CAS  Google Scholar 

  17. Varshney P, Lomga J, Gupta PK, Mohapatra SS, Kumar A (2018) Durable and regenerable superhydrophobic coatings for aluminium surfaces with excellent self-cleaning and anti-fogging properties. Tribol Int 119:38–44. https://doi.org/10.1016/j.triboint.2017.10.033

    Article  Google Scholar 

  18. Liu M, Luo Y, Jia D (2020) Synthesis of mechanically durable superhydrophobic polymer materials with roughness-regeneration performance. Compos A 133:105861. https://doi.org/10.1016/j.compositesa.2020.105861

    Article  CAS  Google Scholar 

  19. Nine MJ, Cole MA, Johnson L, Tran DNH, Losic D (2015) Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Appl Mater Interf 7:28482–28493. https://doi.org/10.1021/acsami.5b09611

    Article  CAS  Google Scholar 

  20. Ding C, Tai Y, Wang D, Tan L, Fu J (2019) Superhydrophobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection. Chem Eng J 357:518–532. https://doi.org/10.1016/j.cej.2018.09.133

    Article  CAS  Google Scholar 

  21. Jiang C, Liu W, Yang M, Liu C, He S, Xie Y, Wang Z (2019) Robust multifunctional superhydrophobic fabric with UV induced reversible wettability, photocatalytic self-cleaning property, and oil-water separation via thiol-ene click chemistry. Appl Surf Sci 463:34–44. https://doi.org/10.1016/j.apsusc.2018.08.197

    Article  CAS  Google Scholar 

  22. Xu Q, Jiang H, Zhang H, Hu Y, Li C (2019) Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl Catal B-Environ 242:60–66. https://doi.org/10.1016/j.apcatb.2018.09.064

    Article  CAS  Google Scholar 

  23. Wang F, Zhu Y, Tian W et al (2018) Co-doped Ni3S2@CNT arrays anchored on graphite foam with a hierarchical conductive network for high-performance supercapacitors and hydrogen evolution electrodes. J Mater Chem A 6:10490–10496. https://doi.org/10.1039/C8TA03131B

    Article  CAS  Google Scholar 

  24. Jian S, Qi Z, Sun S et al (2018) Design and fabrication of superhydrophobic/superoleophilic Ni3S2-nanorods/Ni-mesh for oil-water separation. Surf Coat Technol 337:370–378. https://doi.org/10.1016/j.surfcoat.2018.01.039

    Article  CAS  Google Scholar 

  25. Yin X, Yu S, Bi X, Liu E, Zhao Y (2019) Robust superhydrophobic 1D Ni3S2 nanorods coating for self-cleaning and anti-scaling. Ceram Int 45:24618–24624. https://doi.org/10.1016/j.ceramint.2019.08.192

    Article  CAS  Google Scholar 

  26. Gong Y, Xu Z, Pan H, Lin Y, Yang Z, Du X (2018) Hierarchical Ni3S2 nanosheets coated on Co3O4 nanoneedle arrays on 3D nickel foam as an efficient electrocatalyst for the oxygen evolution reaction. J Mater Chem A 6:5098–5106. https://doi.org/10.1039/C7TA11104E

    Article  CAS  Google Scholar 

  27. Lu W, Song Y, Dou M, Ji J, Wang F (2018) Ni3S2@MoO3 core/shell arrays on Ni foam modified with ultrathin CdS layer as a superior electrocatalyst for hydrogen evolution reaction. Chem Commun 54:646–649. https://doi.org/10.1039/C7CC08446C

    Article  CAS  Google Scholar 

  28. Liu S, Wan W, Zhang X, Crema AD, Seeger S (2020) All-organic fluorine-free superhydrophobic bulk material with mechanochemical robustness and photocatalytic functionality. Chem Eng J 385:123969. https://doi.org/10.1016/j.cej.2019.123969

    Article  CAS  Google Scholar 

  29. Yin X, Yu S, Wang K, Cheng R, Lv Z (2020) Fluorine-free preparation of self-healing and anti-fouling superhydrophobic Ni3S2 coating on 304 stainless steel. Chem Eng J 394:124925. https://doi.org/10.1016/j.cej.2020.124925

    Article  CAS  Google Scholar 

  30. Lu X, Liu R, Wang Q, Xu C (2019) In situ integration of ReS2/Ni3S2 p-n heterostructure for enhanced photoelectrocatalytic performance. ACS Appl Mater Interf 11:40014–40021. https://doi.org/10.1021/acsami.9b13891

    Article  CAS  Google Scholar 

  31. Li G, Cui X, Song B, Ouyang H, Wang K, Sun Y, Wang Y (2020) One-pot synthesis of Cu-doped Ni3S2 nano-sheet/rod nanoarray for high performance supercapacitors. Chem Eng J 388:124319. https://doi.org/10.1016/j.cej.2020.124319

    Article  CAS  Google Scholar 

  32. Feng J, Wu J, Tong Y, Li G (2018) Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J Am Chem Soc 140:610–617. https://doi.org/10.1021/jacs.7b08521

    Article  CAS  Google Scholar 

  33. He Y, Zhang P, Huang H, Li X, Zhai X, Chen B, Guo Z (2020) Engineering sulfur vacancies of Ni3S2 nanosheets as a binder-free cathode for an aqueous rechargeable Ni-Zn battery. ACS Appl Energy Mater 3:3863–3875. https://doi.org/10.1021/acsaem.0c00275

    Article  CAS  Google Scholar 

  34. Zhao J, Li Z, Yuan X et al (2019) Novel core-shell multi-dimensional hybrid nanoarchitectures consisting of Co(OH)2 nanoparticles/Ni3S2 nanosheets grown on SiC nanowire networks for high-performance asymmetric supercapacitors. Chem Eng J 357:21–32. https://doi.org/10.1016/j.cej.2018.09.107

    Article  CAS  Google Scholar 

  35. Liu Q, Chen D, Kang Z (2015) One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS Appl Mater Interf 7:1859–1867. https://doi.org/10.1021/am507586u

    Article  CAS  Google Scholar 

  36. Wang C, Han Q, Xie R et al (2020) Fabrication of petal-like Ni3S2 nanosheets on 3D carbon nanotube foams as high-performance anode materials for Li-ion batteries. Electrochim Acta 331:135383. https://doi.org/10.1016/j.electacta.2019.135383

    Article  CAS  Google Scholar 

  37. Maji K, Manna U (2018) Hierarchically featured and substrate independent bulk-deposition of ‘reactive’ polymeric nanocomplexes for controlled and strategic manipulation of durable biomimicking wettability. J Mater Chem A 6:6642–6653. https://doi.org/10.1039/C8TA00466H

    Article  CAS  Google Scholar 

  38. Zhang X, Wang L, Leva¨nen E, (2013) Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv 3:12003–12020. https://doi.org/10.1039/C3RA40497H

    Article  CAS  Google Scholar 

  39. Crick CR, Parkin IP (2011) Water droplet bouncing-a definition for superhydrophobic surfaces. Chem Commun 47:12059–12061. https://doi.org/10.1039/C1CC14749H

    Article  CAS  Google Scholar 

  40. Manoj TP, Rasitha TP, Vanithakumari SC, Anandkumar B, George RP, Philip J (2020) A simple, rapid and single step method for fabricating superhydrophobic titanium surfaces with improved water bouncing and self cleaning properties. Appl Surf Sci 512:145636. https://doi.org/10.1016/j.apsusc.2020.145636

    Article  CAS  Google Scholar 

  41. Zhou C, ChenZ YH, Hou K, Zeng X, Zheng Y, Cheng J (2017) Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Appl Mater Interf 9:9184–9194. https://doi.org/10.1021/acsami.7b00412

    Article  CAS  Google Scholar 

  42. Rayer AV, Sumon KZ, Henni A, Tontiwachwuthikul P (2011) Kinetics of the reaction of carbon dioxide (CO2) with cyclic amines using the stopped-flow technique. Energy Procedia 4:140–147. https://doi.org/10.1016/j.egypro.2011.01.034

    Article  CAS  Google Scholar 

  43. Wang Y, Peng S, Shi X, Lan Y, Zeng G, Zhang K, Li X (2020) A fluorine-free method for fabricating multifunctional durable superhydrophobic fabrics. Appl Surf Sci 505:144621. https://doi.org/10.1016/j.apsusc.2019.144621

    Article  CAS  Google Scholar 

  44. Wang Y, Liu Y, Li J, Chen L, Huang S, Tian X (2020) Fast self-healing superhydrophobic surfaces enabled by biomimetic wax regeneration. Chem Eng J 390:124311. https://doi.org/10.1016/j.cej.2020.124311

    Article  CAS  Google Scholar 

  45. Li D, Guo Z (2017) Stable and self-healing superhydrophobic MnO2@fabrics: applications in self-cleaning, oil/water separation and wear resistance. J Colloid Interf Sci 503:124–130. https://doi.org/10.1016/j.jcis.2017.05.015

    Article  CAS  Google Scholar 

  46. Mao J, Ge M, Huang J et al (2017) Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. J Mater Chem A 5:11873–11881. https://doi.org/10.1039/C7TA01343D

    Article  CAS  Google Scholar 

  47. Guo H, Ma Y, Qin Z, Gu Z, Cui S, Zhang G (2016) One-step transformation from hierarchical-structured superhydrophilic NF membrane into superhydrophobic OSN membrane with improved antifouling effect. ACS Appl Mater Interf 8:23379–23388. https://doi.org/10.1021/acsami.6b07106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province of China (Nos. ZR2019MEM020, ZR2019MEE108) and Fundamental Research Funds for the Central Universities (18CX05002A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sirong Yu or Bingying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Yu, S., Bi, X. et al. Preparation of durable, self-cleaning and photocatalytic superhydrophobic Ni3S2 coating on 304 stainless steel surface against contaminations. J Mater Sci 56, 6719–6731 (2021). https://doi.org/10.1007/s10853-020-05717-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05717-w

Navigation