Skip to main content

Advertisement

Log in

High-performing composite membrane based on dopamine-functionalized graphene oxide incorporated two-dimensional MXene nanosheets for water purification

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With unique structural and physicochemical properties, the upcoming two-dimensional (2D) materials have become promising candidates for the design and fabrication of high-performance membranes. In this work, for the first time, the dopamine-functionalized graphene oxide (DGO) nanosheets were intercalated into the MXene (Ti3C2Tx) nanosheets, and subsequently, a series of novel DGO/MXene composite membranes were prepared via vacuum filtration on hydrophilic polyvinylidene fluoride (PVDF) membranes as the support layer. The effect of mass ratios between DGO and MXene on the resulting membrane structure and overall performances were systematically investigated in detail. Incorporation of DGO increased the mechanical stability of composite membrane, but reduced its interlayer spacing. The most suitable composite membrane, M4 (MXene: DGO = 1:2) with nearly 2 µm thickness of functional layer, exhibited an excellent dye rejection ratio 98.1% (for Direct Red 28) and 96.1%( for Direct Black 38) as along with a high value of water flux (63.5 Lm−2 h−1) at a pressure of 0.1 MPa, compared with the pure MXene and DGO membranes. Furthermore, molecular dynamics (MD) simulation indicated that the permeation rate of water molecules across the active layer was directly determined by the interlayer spacing of nanosheets. Additionally, composite membrane M4 displayed a relatively low rejection ratio of differently charged salts (9.7% for Na+) and (4.3% Mg2+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Berendsen H, Grigera J, Straatsma T (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  2. Chang R, Ma S, Guo X, Xu J, Zhong C, Huang R, Ma J (2019) Hierarchically assembled graphene oxide composite membrane with self-healing and high-efficiency water purification performance. ACS Appl Mater Interfaces 11(49):46251–46260

    Article  CAS  Google Scholar 

  3. Chen C, Wang J, Liu D, Yang C, Liu Y, Ruoff RS, Lei W (2018) Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat Commun 9(1):1–8

    Google Scholar 

  4. Chiao YH, Chen ST, Patra T, Hsu CH, Sengupta A, Hung WS, Huang SH, Qian X, Wickramasinghe R, Chang Y (2019) Zwitterionic forward osmosis membrane modified by fast second interfacial polymerization with enhanced antifouling and antimicrobial properties for produced water pretreatment. Desalination 469:114090

    Article  CAS  Google Scholar 

  5. Ding L, Li L, Liu Y, Wu Y, Lu Z, Deng J, Wei Y, Caro J, Wang H (2020) Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat Sustain 3:296–302

    Article  Google Scholar 

  6. Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding LX, Wang S, Caro J, Gogotsi Y (2018) MXene molecular sieving membranes for highly efficient gas separation. Nat Commun 9(1):1–7

    Article  Google Scholar 

  7. Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H (2017) A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie Int Ed 56(7):1825–1829

    Article  CAS  Google Scholar 

  8. Ding L, Xiao D, Lu Z, Deng J, Wei Y, Caro J, Wang H (2020) Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angewandte Chemie Int Ed 59(22):8720–8726

    Article  CAS  Google Scholar 

  9. Fan Y, Wei L, Meng X, Zhang W, Yang N, Jin Y, Wang X, Zhao M, Liu S (2019) An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving. J Membr Sci 569:117–123

    Article  CAS  Google Scholar 

  10. Han R, Ma X, Xie Y, Teng D, Zhang S (2017) Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC Adv 7:56204–56210

    Article  CAS  Google Scholar 

  11. Hirunpinyopas W, Prestat E, Worrall SD, Haigh SJ, Dryfe RA, Bissett MA (2017) Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano 11(11):11082–11090

    Article  CAS  Google Scholar 

  12. Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X (2013) Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat Commun 4(1):1–9

    Article  Google Scholar 

  13. Jeon MY, Kim D, Kumar P, Lee PS, Rangnekar N, Bai P, Shete M, Elyassi B, Lee HS, Narasimharao K (2017) Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543(7667):690–694

    Article  CAS  Google Scholar 

  14. Kadantsev ES, Boyd PG, Daff TD, Woo TK (2013) Fast and accurate electrostatics in metal organic frameworks with a robust charge equilibration parameterization for high-throughput virtual screening of gas adsorption. J Phys Chem Lett 4(18):3056–3061

    Article  CAS  Google Scholar 

  15. Kang KM, Kim DW, Ren CE, Cho KM, Kim SJ, Choi JH, Nam YT, Gogotsi Y, Jung H (2017) Selective molecular separation on Ti3C2Tx–graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl Mater Interfaces 9(12):44687–44694

    Article  CAS  Google Scholar 

  16. Kang H, Shi J, Liu L, Shan M, Xu Z, Li N, Li J, Lv H, Qian X, Zhao L (2018) Sandwich morphology and superior dye-removal performances for nanofiltration membranes self-assemblied via graphene oxide and carbon nanotubes. Appl Surf Sci 428:990–999

    Article  CAS  Google Scholar 

  17. Khazaei M, Arai M, Sasaki T, Chung CY, Venkataramanan NS, Estili M, Sakka Y, Kawazoe Y (2013) Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater 23(17):2185–2192

    Article  CAS  Google Scholar 

  18. Kosinov N, Gascon J, Kapteijn F, Hensen EJ (2016) Recent developments in zeolite membranes for gas separation. J Membr Sci 499:65–79

    Article  CAS  Google Scholar 

  19. Li Z, Liu Y, Li L, Wei Y, Caro J, Wang H (2019) Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. J Membr Sci 592:117361

    Article  Google Scholar 

  20. Li Z, Wei Y, Gao X, Ding L, Lu Z, Deng J, Yang X, Caro J, Wang H (2020) Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets. Angewandte Chemie Int Ed 59(24):9751–9756

    Article  CAS  Google Scholar 

  21. Li F, Yu Z, Shi H, Yang Q, Chen Q, Pan Y, Zeng G, Yan L (2017) A Mussel-inspired method to fabricate reduced graphene oxide/g-C3N4 composites membranes for catalytic decomposition and oil-in-water emulsion separation. Chem Eng J 322:33–45

    Article  CAS  Google Scholar 

  22. Li L, Zhang T, Duan Y, Wei Y, Dong C, Ding L, Qiao Z, Wang H (2018) Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. J Mater Chem A 6:11734–11742

    Article  CAS  Google Scholar 

  23. Liu G, Jin W, Xu N (2016) Two-dimensional-material membranes: a new family of high-performance separation membranes. Angewandte Chemie Int Edn 55(43):13384–13397

    Article  CAS  Google Scholar 

  24. Liu T, Liu X, Graham N, Yu W, Sun K (2020) Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. J Membr Sci 593:117431

    Article  CAS  Google Scholar 

  25. Liu G, Shen J, Liu Q, Liu G, Xiong J, Yang J, Jin W (2018) Ultrathin two-dimensional MXene membrane for pervaporation desalination. J Membr Sci 548:548–558

    Article  CAS  Google Scholar 

  26. Liu B, Wu R, Baimova JA, Wu H, Law AWK, Dmitriev SV, Zhou K (2016) Molecular dynamics study of pressure-driven water transport through graphene bilayers. Phys Chem Chem Phys 18:1886–1896

    Article  CAS  Google Scholar 

  27. Lu Z, Wei Y, Deng J, Ding L, Li Z, Wang H (2019) Self-Crosslinked MXene (Ti3C2Tx) Membranes with good anti-swelling property for monovalent metal ions exclusion. ACS Nano 13(9):10535–10544

    Article  CAS  Google Scholar 

  28. Ma J, He Y, Zeng G, Li F, Li Y, Xiao J, Yang S (2018) Bio-inspired method to fabricate poly-dopamine/reduced graphene oxide composite membranes for dyes and heavy metal ion removal. Polym Adv Technol 29(2):941–950

    Article  CAS  Google Scholar 

  29. Ma J, Tang X, He Y, Fan Y, Chen J, Hao Yu (2020) Robust stable MoS2/GO filtration membrane for effective removal of dyes and salts from water with enhanced permeability. Desalination 480:114328

    Article  CAS  Google Scholar 

  30. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  31. Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD (2017) Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356:530

    Article  Google Scholar 

  32. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  33. Rappé AK, Casewit CJ, Colwell K, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035

    Article  Google Scholar 

  34. Rasool K, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, Gogotsi Y (2017) Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci Rep 7:1–11

    Article  Google Scholar 

  35. Ren CE, Hatzell KB, Alhabeb M, Ling Z, Mahmoud KA, Gogotsi Y (2015) Charge-and size-selective ion sieving through Ti3C2T x MXene membranes. J Phys Chem Lett 6(20):4026–4031

    Article  CAS  Google Scholar 

  36. Shi X, Xiao A, Zhang C, Wang Y (2019) Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra-to nanofiltration. J Membr Sci 576:116–122

    Article  CAS  Google Scholar 

  37. Wang R, Shi X, Zhang Z, Xiao A, Sun SP, Cui Z, Wang Y (2019) Unidirectional diffusion synthesis of covalent organic frameworks (COFs) on polymeric substrates for dye separation. J Membr Sci 586:274–280

    Article  CAS  Google Scholar 

  38. Wang S, Yang L, He G, Shi B, Li Y, Wu H, Zhang R, Nunes S, Jiang Z (2020) Two-dimensional nanochannel membranes for molecular and ionic separations. Chem Soc Rev 49:1071–1089

    Article  CAS  Google Scholar 

  39. Wang J, Zhu J, Zhang Y, Liu J, Van der Bruggen B (2017) Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. Nanoscale 9(9):2942–2957

    Article  CAS  Google Scholar 

  40. Wei S, Xie Y, Xing Y, Wang L, Ye H, Xiong X, Wang S, Han K (2019) Two-dimensional graphene Oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. J Membr Sci 582:414–422

    Article  CAS  Google Scholar 

  41. Xi YH, Liu Z, Ji J, Wang Y, Faraj Y, Zhu Y, Xie R, Ju XJ, Wang W, Lu X, Chu LY (2018) Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. J Membr Sci 550:208–218

    Article  CAS  Google Scholar 

  42. Xu L, Yang W, Neoh KG, Kang ET, Fu GD (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43(20):8336–8339

    Article  CAS  Google Scholar 

  43. Ying Y, Yang Y, Ying W, Peng X (2016) Two-dimensional materials for novel liquid separation membranes. Nanotechnology 27(33):332001

    Article  Google Scholar 

  44. Yu H, He Y, Xiao G, Fan Y, Ma J, Gao Y, Hou R, Yin X, Wang Y, Mei X (2020) The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane. Chem Eng J 389:124375

    Article  CAS  Google Scholar 

  45. Zeng G, Wei K, Yang D, Yan J, Zhou K, Patra T, Sengupta A, Chiao YH (2020) Improvement in performance of PVDF ultrafiltration membranes by co-incorporation of dopamine and halloysite nanotubes. Coll Surf A: Physicochem Eng Asp 586:124142

    Article  CAS  Google Scholar 

  46. Zhang P, Gong J-L, Zeng G-M, Song B, Fang S, Zhang M, Liu H-Y, Huan S-Y, Peng P, Niu Q-Y, Wang D-B, Ye J (2019) Enhanced permeability of rGO/S-GO layered membranes with tunable inter-structure for effective rejection of salts and dyes. Sep Purif Technol 220:309–319

    Article  CAS  Google Scholar 

  47. Zhang C, Wei K, Zhang W, Bai Y, Sun Y, Gu J (2017) Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration. ACS Appl Mater Interfaces 9:11082–11094

    Article  CAS  Google Scholar 

  48. Zheng S, Tu Q, Urban JJ, Li S, Mi B (2017) Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11(6):6440–6450

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work is acknowledged to the Teacher Development Research Start-up Fund of Chengdu University of Technology (10912-2019KYQD-07276). We are grateful for the characterizations results provided by “Ceshigo” (www.ceshigo.com).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangyong Zeng or Size Zheng.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, G., Lin, Q., Wei, K. et al. High-performing composite membrane based on dopamine-functionalized graphene oxide incorporated two-dimensional MXene nanosheets for water purification. J Mater Sci 56, 6814–6829 (2021). https://doi.org/10.1007/s10853-020-05746-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05746-5

Navigation