Skip to main content
Log in

Intriguing electronic, optical and mechanical properties of the vertical and lateral heterostructures on the boron phosphide and GaN monolayers

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using the first-principles method, the structural, electronic, optical and mechanical properties of the vertical and lateral heterostructures based on the boron phosphide (BP) and GaN monolayers, named V-GaN@BP and L-GaN@BP, are investigated systematically. Our results revealed that the band structure of the V-GaN@BP is more sensitive than that of the L-GaN@BP to the strain and the external electric field (Efield). For the VD-GaN@BP, with the Efield and strain, the band structure not only undergoes a fascinating direct–indirect and semiconductor–metal transition, but also experiences a transition from type-I to type-II. However, the LNB-GaN@BP maintains a type-II semiconductor with an indirect band gap, though the band gaps can be strongly modulated by applied strain and the Efield. Moreover, the heterostructures are found to be mechanically stable presenting superior optical properties in the visible and UV light range. Consequently, we expect the GaN@BP heterostructures are novel architectures for the future development of efficient optoelectronic devices, due to the selective control of their bandgaps, the excellent optical and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Chen X, Yang Q, Meng R, Jiang J, Liang Q, Tan C, Sun X (2016) The electronic and optical properties of novel germanene and antimonene heterostructures. J Mater Chem C 4:5434–5441

    Article  CAS  Google Scholar 

  2. Huang L, Huo N, Li Y, Chen H, Yang J, Wei Z, Li J, Li S-S (2015) Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals p-n heterostructure. J Phys Chem Lett 6:2483–2488

    Article  CAS  Google Scholar 

  3. Chen X, Sun X, Yang DG, Meng R, Tan C, Yang Q, Liang Q, Jiang J (2016) SiGe/h-BN heterostructure with inspired electronic and optical properties: a first-principles study. J Mater Chem C 4:10082–10089

    Article  CAS  Google Scholar 

  4. Chen X, Meng R, Jiang J, Liang Q, Yang Q, Tan C, Sun X, Zhang S, Ren T (2016) Electronic structure and optical properties of graphene/stanene heterobilayer. Phys Chem Chem Phys 18:16302–16309

    Article  CAS  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  6. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field fffect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  7. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  8. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  CAS  Google Scholar 

  9. Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang Z-Y, Dresselhaus MS, Li L-J, Kong J (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett 10:4134–4139

    Article  CAS  Google Scholar 

  10. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215

    Article  CAS  Google Scholar 

  11. Ismach A, Chou H, Ferrer DA, Wu Y, McDonnell S, Floresca HC, Covacevich A, Pope C, Piner R, Kim MJ, Wallace RM, Colombo L, Ruoff RS (2012) Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano 6:6378–6885

    Article  CAS  Google Scholar 

  12. Kim KK, Hsu A, Jia X, Kim SM, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva JF, Dresselhaus M, Palacios T, Kong J (2012) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett 12:161–166

    Article  Google Scholar 

  13. Park J-H, Park JC, Yun SJ, Kim H, Luong DH, Kim SM, Choi SH, Yang W, Kong J, Kim KK, Lee YH (2014) Large-area monolayer hexagonal boron nitride on Pt foil. ACS Nano 8:8520–8528

    Article  CAS  Google Scholar 

  14. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102:10451–10453

    Article  CAS  Google Scholar 

  15. Li LH, Chen Y (2016) Atomically thin boron nitride: unique properties and applications. Adv Funct Mater 26:2594–2608

    Article  CAS  Google Scholar 

  16. Weng Q, Wang X, Wang X, Bando Y, Golberg D (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem Soc Rev 45:3989–4012

    Article  CAS  Google Scholar 

  17. Qian Y, Van Ngoc H, Kang DJ (2017) Growth of graphene/h-BN heterostructures on recyclable Pt foils by one-batch chemical vapor deposition. Sci Rep 7:17083

    Article  Google Scholar 

  18. Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys Rev B 80:155453

    Article  Google Scholar 

  19. Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias E, Giamini SA, Grazianetti C, Chiappe D, Molle A, Fanciulli M, Dimoulas A (2013) Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Appl Phys Lett 103:251605

    Article  Google Scholar 

  20. Tusche C, Meyerheim HL, Kirschner J (2007) Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys Rev Lett 99:026102

    Article  CAS  Google Scholar 

  21. Udagawa T, Odawara M, Shimaoka G (2003) Lattice-matched boronphosphide (BP)/hexagonal GaN heterostructure for inhibition of dislocation penetration. Phys Stat Sol (C) 2027–2030.

  22. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558

    Article  CAS  Google Scholar 

  23. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  26. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  27. Chen XP, Yang N, Ni JM, Cai M, Ye HY, Wong CKY, Leung SYY, Ren TL (2015) Density-functional calculation of methane adsorption on graphenes. IEEE Electr Device Lett 36:1366–1368

    Article  CAS  Google Scholar 

  28. Chen X, Yang N, Jiang J, Liang Q, Yang D, Zhang G, Ren T (2015) Ab initio study of temperature, humidity, and covalent functionalization-induced bandgap change of single-walled carbon nanotubes. IEEE Electr Device Lett 36:606–608

    Article  CAS  Google Scholar 

  29. Yang Q, Meng R, Jiang J, Liang Q, Tan C, Cai M, Sun X, Yang D, Ren T, Chen X (2016) First-principles study of sulfur dioxide sensor based on phosphorenes. IEEE Electr Device Lett 37:660–662

    Article  CAS  Google Scholar 

  30. Chen XP, Jiang JK, Liang QH, Yang N, Ye HY, Cai M, Shen L, Yang DG, Ren TL (2015) First-principles study of the effect of functional groups on polyaniline backbone. Sci Rep 5:16907

    Article  CAS  Google Scholar 

  31. Miyamoto Y, Cohen ML, Louie SG (1997) Theoretical investigation of graphitic carbon nitride and possible tubule forms. Solid State Commun 102:605–608

    Article  CAS  Google Scholar 

  32. Peng Q, Liang C, Ji W, De S (2013) Mechanical properties of g-GaN: a first principles study. Appl Phys A 113:483–490

    Article  CAS  Google Scholar 

  33. Onen A, Kecik D, Durgun E, Ciraci S (2016) GaN: from three- to two-dimensional single-layer crystal and its multilayer van der Waals solids. Phys Rev B 93:085431

    Article  Google Scholar 

  34. Feng C, Qin H, Yang D, Zhang G (2019) First-principles investigation of the adsorption behaviors of CH(2)O on BN, AlN, GaN, InN, BP, and P monolayers. Materials 12:676

    Article  CAS  Google Scholar 

  35. Çakır D, Kecik D, Sahin H, Durgun E, Peeters FM (2015) Realization of a p–n junction in a single layer boron-phosphide. Phys Chem Chem Phys 17:13013–13020

    Article  Google Scholar 

  36. Yu W, Zhu Z, Zhang S, Cai X, Wang X, Niu C-Y, Zhang W-B (2016) Tunable electronic properties of GeSe/phosphorene heterostructure from first-principles study. Appl Phys Lett 109:103104

    Article  Google Scholar 

  37. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  38. Wang B-J, Li X-H, Zhao R, Cai X-L, Yu W-Y, Li W-B, Liu Z-S, Zhang L-W, Ke S-H (2018) Electronic structures and enhanced photocatalytic properties of blue phosphorene/BSe van der Waals heterostructures. J Mater Chem A 6:8923–8929

    Article  CAS  Google Scholar 

  39. Sun Q, Dai Y, Ma Y, Yin N, Wei W, Yu L, Huang B (2016) Design of lateral heterostructure from arsenene and antimonene 2D. Materials 3:035017

    Google Scholar 

  40. Lee J, Huang J, Sumpter BG, Yoon M (2017) Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures 2D. Mater 4:021016

    Google Scholar 

  41. Wang Y, Song N, Yang X, Zhang J, Xu B, Li M, Zheng Y, Yang D (2019) Tailoring the electronic properties of graphyne/blue phosphorene heterostructure via external electric field and vertical strain. Chem Phys Lett 730:277–282

    Article  CAS  Google Scholar 

  42. Li M-Y, Shi Y, Cheng C-C, Lu L-S, Lin Y-C, Tang H-L, Tsai M-L, Chu C-W, Wei K-H, He J-H, Chang W-H, Suenaga K, Li L-J (2015) Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349:524–528

    Article  CAS  Google Scholar 

  43. Topsakal M, Cahangirov S, Ciraci S (2010) The response of mechanical and electronic properties of graphane to the elastic strain. Appl Phys Lett 96:091912

    Article  Google Scholar 

  44. Yorulmaz U, Özden A, Perkgöz NK, Ay F, Sevik C (2016) Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechnology 27:335702

    Article  Google Scholar 

  45. Mouhat F, Coudert F-X (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90:224104

    Article  Google Scholar 

  46. Born M (2008) On the stability of crystal lattices. I. Math Proc Camb 36:160–172

    Article  Google Scholar 

Download references

Acknowledgements

The work was support by the National Natural Science Foundation of China (Grant No. 61841702), Funding scheme for young teachers in colleges and universities in Henan province (Grant No. 2017GGJS077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 304 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, X., Song, N. et al. Intriguing electronic, optical and mechanical properties of the vertical and lateral heterostructures on the boron phosphide and GaN monolayers. J Mater Sci 56, 7451–7463 (2021). https://doi.org/10.1007/s10853-021-05785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05785-6

Navigation