Skip to main content

Advertisement

Log in

Rational Design of a Core–Shell-Shaped Flowerlike Mn0.05Cd0.95S@NiAl-LDH Structure for Efficient Hydrogen Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydrogen production from water splitting is considered as a brand-new and promising way to convert solar energy into recyclable chemical energy. Herein, a core–shell-shaped structure which consisted of Mn0.05Cd0.95S nanorods and flowerlike NiAl-LDH microsphere was constructed via a simple hydrothermal method. The constructed Mn0.05Cd0.95S/ NiAl-LDH core–shell-shaped structure shows superior photocatalytic H2 evolution. The highest photocatalytic H2 evolution rate of the composite is 7.5 mmol g−1 h−1, which is 17 and 6 times higher than those of NiAl-LDH and Mn0.05Cd0.95S respectively. The core–shell like structure is beneficial for the H2 production reaction because NiAl-LDH flowerlike microsphere can provide large surface for the anchoring of Mn0.05Cd0.95S nanorods, which can enhance the interaction between these two materials. A series of characterizations including XRD, FT-IR, SEM, TEM, BET, XPS, UV−vis DRS, etc., were conducted and studied to analyze the reason for the enhanced photocatalytic hydrogen evolution activity. The results of XPS show that an interaction between NiAl-LDH and Mn0.05Cd0.95S has been occurred. The interaction between these two materials is presented through the transfer of electrons, which can be demonstrated by the results of XPS. And, it is found that the rational designed structure can accelerate the transfer of electrons and this is the reason for the enhanced photocatalytic evolution performance.

Graphic Abstract

A core-shell like structure consisted of Mn0.05Cd0.95S nanorods and NiAl-LDH nanoflower like sphere was designed rationally via a simple method. The NiAl-LDH nanoflower like sphere with some wrinkles on its surface can provide more areas to contact with Mn0.05Cd0.95S nanorods, which can is beneficial for the interaction between these two materials and accelerate the transfer of electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cheng L, Xiang Q, Liao Y, Zhang H (2018) CdS-based photocatalysts. Energy Environ Sci 11(6):1362–1391

    CAS  Google Scholar 

  2. Xu Y, Xu R (2015) Nickel-based cocatalysts for photocatalytic hydrogen production. Appl Surf Sci 351:779–793

    CAS  Google Scholar 

  3. Li X, Xiong J, Gao X, Ma J, Chen Z, Kang B et al (2020) Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity. J Hazard Mater 387:121690

    CAS  PubMed  Google Scholar 

  4. Dong S, Cui L, Zhao Y, Wu Y, Xia L, Su X et al (2019) Crystal structure and photocatalytic properties of perovskite MSn(OH)6 (M = Cu and Zn) composites with d10–d10 configuration. Appl Surf Sci 463:659–667

    CAS  Google Scholar 

  5. Xiong J, Li X, Huang J, Gao X, Chen Z, Liu J et al (2020) CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl Catal B 266:118602

    CAS  Google Scholar 

  6. Yin C, Cui L, Pu T, Fang X, Shi H, Kang S et al (2018) Facile fabrication of nano-sized hollow-CdS@g-C3N4 Core-shell spheres for efficient visible-light-driven hydrogen evolution. Appl Surf Sci 456:464–472

    CAS  Google Scholar 

  7. Fang X, Cui L, Pu T, Song J, Zhang X (2018) Core-shell CdS@MnS nanorods as highly efficient photocatalysts for visible light driven hydrogen evolution. Appl Surf Sci 457:863–869

    CAS  Google Scholar 

  8. Yuan L, Han C, Yang M-Q, Xu Y-J (2016) Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements. Int Rev Phys Chem 35(1):1–36

    CAS  Google Scholar 

  9. Ahmad H, Kamarudin SK, Minggu LJ, Kassim M (2015) Hydrogen from photo-catalytic water splitting process: a review. Renew Sustain Energy Rev 43:599–610

    CAS  Google Scholar 

  10. Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180

    CAS  PubMed  Google Scholar 

  11. Schneider J, Bahnemann DW (2013) Undesired role of sacrificial reagents in photocatalysis. J Phys Chem Lett 4(20):3479–3483

    CAS  Google Scholar 

  12. Li H, Yan X, Lin B, Xia M, Wei J, Yang B et al (2018) Controllable spatial effect acting on photo-induced CdS@CoP@SiO2 ball-in-ball nano-photoreactor for enhancing hydrogen evolution. Nano Energy 47:481–493

    CAS  Google Scholar 

  13. Peng Q-X, Xue D, Zhan S-Z, Ni C-L (2017) Visible-light-driven photocatalytic system based on a nickel complex over CdS materials for hydrogen production from water. Appl Catal B 219:353–361

    CAS  Google Scholar 

  14. Liu M, Zhang L, He X, Zhang B, Song H, Li S et al (2014) L-Cystine-assisted hydrothermal synthesis of Mn1−xCdxS solid solutions with hexagonal wurtzite structure for efficient photocatalytic hydrogen evolution under visible light irradiation. J Mater Chem A 2(13):4619–4626

    CAS  Google Scholar 

  15. Zhou X, Yu H, Zhao D, Wang X, Zheng S (2019) Combination of polyoxotantalate and metal sulfide: A new-type noble-metal-free binary photocatalyst Na8Ta6O19/Cd0.7Zn0.3S for highly efficient visible-light-driven H2 evolution. Appl Catal B: Environ 248:423–429

    CAS  Google Scholar 

  16. Xiao S, Dai W, Liu X, Pan D, Zou H, Li G et al (2019) Microwave-induced metal dissolution synthesis of core-shell copper nanowires/ZnS for visible light photocatalytic H2 evolution. Adv Energy Mater 9(22):1900775

    Google Scholar 

  17. Fu J, Xu Q, Low J, Jiang C, Yu J (2019) Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B 243:556–565

    CAS  Google Scholar 

  18. Gao H, Cao R, Zhang S, Yang H, Xu X (2018) 3D hierarchical g-C3N4 architectures assembled by ultrathin self-doped nanosheets: extremely facile HMTA activation and superior photocatalytic hydrogen evolution. ACS Appl Mater Interfaces 11(2):2050–2059

    Google Scholar 

  19. Liu X, Liang X, Wang P, Huang B, Qin X, Zhang X et al (2017) Highly efficient and noble metal-free NiS modified MnxCd1-xS solid solutions with enhanced photocatalytic activity for hydrogen evolution under visible light irradiation. Appl Catal B 203:282–288

    CAS  Google Scholar 

  20. Zhang FM, Sheng JL, Yang ZD, Sun XJ, Tang HL, Lu M et al (2018) Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew Chem Int Ed Engl 57(37):12106–12110

    CAS  PubMed  Google Scholar 

  21. Chen J, Shen S, Wu P, Guo L (2015) Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production. Green Chem 17(1):509–517

    Google Scholar 

  22. Lu Y, Yin WJ, Peng KL, Wang K, Hu Q, Selloni A et al (2018) Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat Commun 9(1):2752

    PubMed  PubMed Central  Google Scholar 

  23. Wang B, He S, Zhang L, Huang X, Gao F, Feng W et al (2019) CdS nanorods decorated with inexpensive NiCd bimetallic nanoparticles as efficient photocatalysts for visible-light-driven photocatalytic hydrogen evolution. Appl Catal B 243:229–235

    CAS  Google Scholar 

  24. Wei W, Tian Q, Sun H, Liu P, Zheng Y, Fan M et al (2020) Efficient visible-light-driven photocatalytic H2 evolution over MoO2-C/CdS ternary heterojunction with unique interfacial microstructures. Appl Catal B 260:118153

    CAS  Google Scholar 

  25. Wu A, Tian C, Jiao Y, Yan Q, Yang G, Fu H (2017) Sequential two-step hydrothermal growth of MoS2/CdS core-shell heterojunctions for efficient visible light-driven photocatalytic H2 evolution. Appl Catal B 203:955–963

    CAS  Google Scholar 

  26. Liu Y, Li Y, Peng F, Lin Y, Yang S, Zhang S et al (2019) 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution. Appl Catal B 241:236–245

    CAS  Google Scholar 

  27. Xu X, Pan L, Han Q, Wang C, Ding P, Pan J et al (2019) Metallic molybdenum sulfide nanodots as platinum-alternative co-catalysts for photocatalytic hydrogen evolution. J Catal 374:237–245

    CAS  Google Scholar 

  28. Nayak S, Swain G, Parida K (2019) Enhanced photocatalytic activities of RhB degradation and H2 evolution from in situ formation of the electrostatic heterostructure MoS2/NiFe LDH nanocomposite through the Z-scheme mechanism via p-n heterojunctions. ACS Appl Mater Interfaces 11(23):20923–20942

    CAS  PubMed  Google Scholar 

  29. Chen J, Zheng F, Zhang S-J, Fisher AC, Zhou Y, Wang Z et al (2018) Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal 8(12):11342–11351

    CAS  Google Scholar 

  30. Wang T, Zhang Y, Wang Y, Zhou J, Wu L, Sun Y et al (2018) Alumina-supported CoPS nanostructures derived from LDH as highly active bifunctional catalysts for overall water splitting. ACS Sustain Chem Eng 6(8):10087–10096

    CAS  Google Scholar 

  31. Wu L, Ding X, Zheng Z, Tang A, Zhang G, Atrens A et al (2019) Doublely-doped Mg-Al-Ce-V2O74- LDH composite film on magnesium alloy AZ31 for anticorrosion. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2019.09.031

    Article  Google Scholar 

  32. Chen L, Li C, Wei Y, Zhou G, Pan A, Wei W et al (2016) Hollow LDH nanowires as excellent adsorbents for organic dye. J Alloy Compd 687:499–505

    CAS  Google Scholar 

  33. Huang Q-Z, Tao Z-J, Ye L-Q, Yao H-C, Li Z-J (2018) Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation. Appl Catal B: Environ 237:689–698

    CAS  Google Scholar 

  34. Tonda S, Kumar S, Bhardwaj M, Yadav P, Ogale S (2018) g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl Mater Interfaces 10(3):2667–2678

    CAS  PubMed  Google Scholar 

  35. Li S, Cheng P, Luo J, Zhou D, Xu W, Li J et al (2017) High-performance flexible asymmetric supercapacitor based on CoAl-LDH and rGO electrodes. Nanomicro Lett 9(3):31

    PubMed  PubMed Central  Google Scholar 

  36. Sahoo DP, Nayak S, Reddy KH, Martha S, Parida K (2018) Fabrication of a Co(OH)2/ZnCr LDH "p-n" heterojunction photocatalyst with enhanced separation of charge carriers for efficient visible-light-driven H2 and O2 evolution. Inorg Chem 57(7):3840–3854

    CAS  PubMed  Google Scholar 

  37. Huang S, Zhu GN, Zhang C, Tjiu WW, Xia YY, Liu T (2012) Immobilization of Co-Al layered double hydroxides on graphene oxide nanosheets: growth mechanism and supercapacitor studies. ACS Appl Mater Interfaces 4(4):2242–2249

    CAS  PubMed  Google Scholar 

  38. Zhang X, Lv X, Bi F, Lu G, Wang Y (2020) Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: the influence of MOFs precursors. Mol Catal 482:110701

    CAS  Google Scholar 

  39. Zhang X, Li H, Hou F, Yang Y, Dong H, Liu N et al (2017) Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100. Appl Surf Sci 411:27–33

    CAS  Google Scholar 

  40. Shi R, Ye HF, Liang F, Wang Z, Li K, Weng Y et al (2018) Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents. Adv Mater 30(6):1705941

    Google Scholar 

  41. Li S, Wang L, Li Y, Zhang L, Wang A, Xiao N et al (2019) Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution. Appl Catal B 254:145–155

    CAS  Google Scholar 

  42. Kumar S, Isaacs MA, Trofimovaite R, Durndell L, Parlett CMA, Douthwaite RE et al (2017) P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction. Appl Catal B 209:394–404

    CAS  Google Scholar 

  43. Zhang X, Song L, Bi F, Zhang D, Wang Y, Cui L (2020) Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO-66 derivative. J Colloid Interface Sci 571:38–47

    CAS  PubMed  Google Scholar 

  44. Bi F, Zhang X, Chen J, Yang Y, Wang Y (2020) Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation. Appl Catal B 269:118767

    CAS  Google Scholar 

  45. Lee H, Reddy DA, Kim Y, Chun SY, Ma R, Kumar DP et al (2018) Drastic improvement of 1D-CdS solar-driven photocatalytic hydrogen evolution rate by integrating with NiFe layered double hydroxide nanosheets synthesized by liquid-phase pulsed-laser ablation. ACS Sustain Chem Eng 6(12):16734–16743

    CAS  Google Scholar 

  46. Wei Y, Cheng G, Xiong J, Xu F, Chen R (2017) Positive Ni(HCO3)2 as a novel cocatalyst for boosting the photocatalytic hydrogen evolution capability of mesoporous TiO2 nanocrystals. ACS Sustain Chem Eng 5(6):5027–5038

    CAS  Google Scholar 

  47. Rudolf C, Dragoi B, Ungureanu A, Chirieac A, Royer S, Nastro A et al (2014) NiAl and CoAl materials derived from takovite-like LDHs and related structures as efficient chemoselective hydrogenation catalysts. Catal Sci Technol 4(1):179–189

    CAS  Google Scholar 

  48. Wang Y, Hao X, Zhang L, Li Y, Jin Z (2020) Rational design of all-solid-state 0D/2D Mn0.2Cd0.8S/CeO2 direct Z-scheme for photocatalytic hydrogen evolution. Energy Fuels 34(2):2599–2611

    CAS  Google Scholar 

  49. Low J, Dai B, Tong T, Jiang C, Yu J (2019) In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2 /CdS composite film photocatalyst. Adv Mater 31(6):1802981

    Google Scholar 

  50. Zhang P, Lou XWD (2019) Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Adv Mater 31(29):1900281

    Google Scholar 

  51. Gelderman K, Lee L, Donne SW (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84(4):685–688

    CAS  Google Scholar 

  52. Wang Y, Wang G, Zhang L, Jin Z, Zhao T (2019) Hydroxides Ni(OH)2&Ce(OH)3 as a novel hole storage layer for enhanced photocatalytic hydrogen evolution. Dalton Trans 48(47):17660–17672

    CAS  PubMed  Google Scholar 

  53. Hao X, Zhou J, Cui Z, Wang Y, Wang Y, Zou Z (2018) Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production. Appl Catal B 229:41–51

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of the Ningxia Hui Autonomous Region (2020AAC02026).

Author information

Authors and Affiliations

Authors

Contributions

YW designed the experiments, XH, GW and ZJ contributed reagents/materials and analysis tools; and YW wrote the paper.

Corresponding authors

Correspondence to Xuqiang Hao or Zhiliang Jin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hao, X., Wang, G. et al. Rational Design of a Core–Shell-Shaped Flowerlike Mn0.05Cd0.95S@NiAl-LDH Structure for Efficient Hydrogen Evolution. Catal Lett 151, 634–647 (2021). https://doi.org/10.1007/s10562-020-03346-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03346-1

Keywords

Navigation