Skip to main content
Log in

Remarkable Enhancement of Eu–TiO2–GO Composite for Photodegradation of Indigo Carmine: A Design Method Based on Computational and Experimental Perspectives

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Environmental pollution, particularly water contamination, is regarded as one of the most crucial global problems, where a semiconductor photocatalyst towards organic pollutant degradation driven by photocatalysis is a promising technique. Herein, novel Eu–TiO2–GO composites with excellent photocatalytic performance were fabricated via simple and green sol–gel technique. In addition, density functional theory (DFT) method was employed to investigate the electronic structure, stability and charge transfer of the composites. The experimental study revealed that the optimal performance was obtained with the Eu–TiO2–GO (0.6% Eu) composite, of which the apparent rate constant was about 19-folds higher than that of bulk TiO2 because of the combined effects of better visible light absorbance and efficient separation of charge carriers. The efficiency of Eu–TiO2–GO (0.6% Eu) in the degradation of indigo carmine (IC) dye reached 96.78% in 60 min under light irradiation. Based on the DFT method, we observe an efficient electron–hole pair separation, a potential drop and an in-built polarised electric field at the interface of Eu–TiO2–GO composite. Remarkably, Eu–TiO2–GO composite was found to exhibit a stronger interfacial interaction, smaller interlayer distance and a larger redistribution of charge than TiO2–GO composite. The stability and reusability of Eu–TiO2–GO (0.6% Eu) composite as an effective solar photocatalyst was confirmed by five cycling tests of wastewater treatment. From radical quenching experiments, hydroxyl and superoxide radicals were the dominant active species for the photodegradation reaction of IC dye. All these findings may shed light on the intrinsic reasons for the improved degradation of pollutants.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. Adeyemo AA, Adeoye IO, Bello OS (2012) Metal organic frameworks as adsorbents for dye adsorption: overview, prospects and future challenges. Toxicol Environ Chem 94:1846–1863

    CAS  Google Scholar 

  2. Cao F, Xiong J, Wu F, Liu Q, Shi Z, Yu Y, Wang X, Li L (2016) Enhanced photoelectrochemical performance from rationally designed anatase/rutile TiO2 heterostructures. ACS Appl Mater Interfaces 8:12239–12245

    CAS  PubMed  Google Scholar 

  3. Rozich A, Gaudy A Jr, D’adamo P (1985) Selection of growth rate model for activated sludges treating phenol. Water Res 19:481–490

    CAS  Google Scholar 

  4. Tan P, Zhu A, Qiao L, Zeng W, Cui H, Pan J (2019) Manganese oxide at cadmium sulfide (MnOx@CdS) shells encapsulated with graphene: A spatially separated photocatalytic system towards superior hydrogen evolution. J Colloid Interface Sci 533:452–462

    CAS  PubMed  Google Scholar 

  5. Velegraki G, Miao J, Drivas C, Liu B, Kennou S, Armatas GS (2018) Fabrication of 3D mesoporous networks of assembled CoO nanoparticles for efficient photocatalytic reduction of aqueous Cr (VI). Appl Catal B 221:635–644

    CAS  Google Scholar 

  6. Kansal SK, Lamba R, Mehta S, Umar A (2013) Photocatalytic degradation of Alizarin Red S using simply synthesized ZnO nanoparticles. Mater Lett 106:385–389

    CAS  Google Scholar 

  7. Rahmani N, Dariani R (2016) Effect of porous silicon buffer under different porosities on lateral overgrowth of TiO2 nanorods on silicon substrate. J Alloys Compd 681:421–425

    CAS  Google Scholar 

  8. Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45:1529–1541

    CAS  PubMed  Google Scholar 

  9. Wu X, Li Y, Zhang G, Chen H, Li J, Wang K, Pan Y, Zhao Y, Sun Y, Xie Y (2019) Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: insight into full spectrum-induced reaction mechanism. J Am Chem Soc 141:5267–5274

    CAS  PubMed  Google Scholar 

  10. Li J, Wu X, Pan W, Zhang G, Chen H (2018) Vacancy-rich monolayer BiO2−x as a highly efficient UV, visible, and near-infrared responsive photocatalyst. Angew Chem Int Ed 57:491–495

    Google Scholar 

  11. Huang Y, Wang K, Guo T, Li J, Wu X, Zhang G (2020) Construction of 2D/2D Bi2Se3/g-C3N4 nanocomposite with High interfacial charge separation and photo-heat conversion efficiency for selective photocatalytic CO2 reduction. Appl Catal B 277:119232

    CAS  Google Scholar 

  12. Wang K, Jiang L, Wu X, Zhang G (2020) Vacancy mediated Z-scheme charge transfer in a 2D/2D La2Ti2O7/g-C3N4 nanojunction as a bifunctional photocatalyst for solar-to-energy conversion. J Mater Chem A 8:13241–13247

    CAS  Google Scholar 

  13. You J, Guo Y, Guo R, Liu X (2019) A review of visible light-active photocatalysts for water disinfection: features and prospects. Chem Eng J 373:624–641

    CAS  Google Scholar 

  14. Lee K, Yoon H, Ahn C, Park J, Jeon S (2019) Strategies to improve the photocatalytic activity of TiO2: 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials. Nanoscale 11:7025–7040

    CAS  PubMed  Google Scholar 

  15. Li J, Du L, Jia S, Sui G, Zhang Y, Zhuang Y, Li B, Xing Z (2018) Synthesis and photocatalytic properties of visible-light-responsive, three-dimensional, flower-like La–TiO2/gC3N4 heterojunction composites. RSC Adv 8:29645–29653

    CAS  Google Scholar 

  16. Pazhamalai P, Krishnamoorthy K, Mariappan VK, Kim S-J (2019) Blue TiO2 nanosheets as a high-performance electrode material for supercapacitors. J Colloid Interface Sci 536:62–70

    CAS  PubMed  Google Scholar 

  17. Sun Y, He Y, Tang B, Wu Z, Tao C, Ban J, Jiang L, Sun X (2018) Selective adsorption and decomposition of pollutants using RGO-TiO2 with optimized surface functional groups. RSC Adv 8:31996–32002

    CAS  Google Scholar 

  18. Liu Z, Chen W-F, Zhang X, Zhang J, Koshy P, Sorrell CC (2019) Structural and microstructural effects of Mo3+/Mo5+ codoping on properties and photocatalytic performance of nanostructured TiO2 Thin films. J Phys Chem C 123:11781–11790

    CAS  Google Scholar 

  19. Wang Y, Zhang M, Yu H, Zuo Y, Gao J, He G, Sun Z (2019) Facile fabrication of Ag/graphene oxide/TiO2 nanorod array as a powerful substrate for photocatalytic degradation and surface-enhanced Raman scattering detection. Appl Catal B 252:174–186

    CAS  Google Scholar 

  20. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is anatase a better photocatalyst than rutile?—model studies on epitaxial TiO2 films. Sci Rep 4:1–8

    Google Scholar 

  21. Seong DB, Park S-J (2019) Preparation and characterization of mesoporous TiO2 Sphere/g-C3N4 nanosheets for photocatalytic behaviors. J Nanosci Nanotechnol 19:6247–6255

    CAS  PubMed  Google Scholar 

  22. Thiagarajan S, Sanmugam A, Vikraman D (2017) Facile methodology of sol-gel synthesis for metal oxide nanostructures. In: Recent applications in sol-gel synthesis, InTech, Rijeka, Croatia, pp 1–17.

  23. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40:3000–3009

    CAS  Google Scholar 

  24. Rashid J, Abbas A, Chang LC, Iqbal A, Haq IU, Rehman A, Awan SU, Arshad M, Rafique M, Barakat M (2019) Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin. Sci Total Environ 665:668–677

    CAS  PubMed  Google Scholar 

  25. Sheng Y, Wei Z, Miao H, Yao W, Li H, Zhu Y (2019) Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst. Chem Eng J 370:287–294

    CAS  Google Scholar 

  26. Li Q, Xia Y, Yang C, Lv K, Lei M, Li M (2018) Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis. Chem Eng J 349:287–296

    CAS  Google Scholar 

  27. Lee Y-C, Chang S-J, Choi M-H, Jeon T-J, Ryu T, Huh YS (2013) Self-assembled graphene oxide with organo-building blocks of Fe-aminoclay for heterogeneous Fenton-like reaction at near-neutral pH: a batch experiment. Appl Catal B 142:494–503

    Google Scholar 

  28. Jilani SM, Banerji P (2014) Graphene oxide–zinc oxide nanocomposite as channel layer for field effect transistors: effect of ZnO loading on field effect transport. ACS Appl Mater Interfaces 6:16941–16948

    CAS  PubMed  Google Scholar 

  29. Zhang Y, Zhong C, Zhang Q, Chen B, He M, Hu B (2015) Graphene oxide–TiO2 composite as a novel adsorbent for the preconcentration of heavy metals and rare earth elements in environmental samples followed by on-line inductively coupled plasma optical emission spectrometry detection. RSC Adv 5:5996–6005

    CAS  Google Scholar 

  30. Kim J, Kim F, Huang J (2010) Seeing graphene-based sheets. Mater Today 13:28–38

    CAS  Google Scholar 

  31. Wei L, Wang P, Yang Y, Zhan Z, Dong Y, Song W, Fan R (2018) Enhanced performance of the dye-sensitized solar cells by the introduction of graphene oxide into the TiO2 photoanode. Inorg Chem Front 5:54–62

    CAS  Google Scholar 

  32. Byeon JH, Kim J-W (2014) Ambient plasma synthesis of TiO2@graphite oxide nanocomposites for efficient photocatalytic hydrogenation. J Mater Chem A 2:6939–6944

    CAS  Google Scholar 

  33. Gong X, Liu Z, Yan D, Zhao H, Li N, Zhang X, Du Y (2015) EuS–CdS and EuS–ZnS heterostructured nanocrystals constructed by Co-thermal decomposition of molecular precursors in the solution phase. J Mater Chem C 3:3902–3907

    CAS  Google Scholar 

  34. Kaur H, Bhatti HS, Singh K (2019) Europium doping effect on 3D flower-like SnO2 nanostructures: morphological changes, photocatalytic performance and fluorescence detection of heavy metal ion contamination in drinking water. RSC Adv 9:37450–37466

    CAS  Google Scholar 

  35. Kubacka A, Fernandez-Garcia M, Colon G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614

    CAS  PubMed  Google Scholar 

  36. Camps I, Borlaf M, Colomer MT, Moreno R, Duta L, Nita C, del Pino AP, Logofatu C, Serna R, György E (2017) Structure-property relationships for Eu doped TiO2 thin films grown by a laser assisted technique from colloidal sols. RSC Adv 7:37643–37653

    CAS  Google Scholar 

  37. Tian Y, Zhang L, Zhang J (2012) A superior visible light-driven photocatalyst: Europium-doped bismuth tungstate hierarchical microspheres. J Alloys Compd 537:24–28

    CAS  Google Scholar 

  38. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube–TiO2 composites. Adv Mater 21:2233–2239

    CAS  Google Scholar 

  39. Oppong SO, Anku WW, Shukla SK, Govender PP (2017) Synthesis and characterisation of neodymium doped-zinc oxide–graphene oxide nanocomposite as a highly efficient photocatalyst for enhanced degradation of indigo carmine in water under simulated solar light. Res Chem Intermed 43:481–501

    CAS  Google Scholar 

  40. Liu X, Liu Y, Lu S, Guo W, Xi B (2018) Performance and mechanism into TiO2/Zeolite composites for sulfadiazine adsorption and photodegradation. Chem Eng J 350:131–147

    CAS  Google Scholar 

  41. Segall MD, Philip JDL, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744

    CAS  Google Scholar 

  42. Hamann D (2017) Erratum: optimized norm-conserving Vanderbilt pseudopotentials. Phys Rev B 95:239906

    Google Scholar 

  43. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Google Scholar 

  44. Head JD, Zerner MC (1985) A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries. Chem Phys Lett 122:264–270

    CAS  Google Scholar 

  45. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215

    CAS  Google Scholar 

  46. Zhou H, Cai W, Li J, Liu X, Xiong W, Zhou Y, Xu Z, Wang B, Ye C (2020) C2N/BlueP van der Waals hetero-structure: an efficient photocatalytic water splitting 2D material. Phys Chem Chem Phys 22:1485–1492

    CAS  PubMed  Google Scholar 

  47. Xiang Q, Lang D, Shen T, Liu F (2015) Graphene-modified nanosized Ag3PO4 photocatalysts for enhanced visible-light photocatalytic activity and stability. Appl Catal B 162:196–203

    CAS  Google Scholar 

  48. Jia S, Li J, Sui G, Du L, Zhang Y, Zhuang Y, Li B (2019) Synthesis of 3D flower-like structured Gd/TiO2@rGO nanocomposites via a hydrothermal method with enhanced visible-light photocatalytic activity. RSC Adv 9:31177–31185

    CAS  Google Scholar 

  49. Zhang X, Li L, Zhou Q, Cao Y, Ma F, Li Y (2019) Three-dimensionally ordered hollow sphere array Pt/In2O3–TiO2 with improved photocatalytic efficiency. New J Chem 43:10689–10698

    CAS  Google Scholar 

  50. Paula LF, Hofer M, Lacerda VP, Bahnemann DW, Patrocinio AOT (2019) Unraveling the photocatalytic properties of TiO2/WO3 mixed oxides. Photochem Photobiol Sci 18:2469–2483

    CAS  PubMed  Google Scholar 

  51. Oppong SO-B, Opoku F, Govender PP (2019) Tuning the electronic and structural properties of Gd-TiO2-GO nanocomposites for enhancing photodegradation of IC dye: The role of Gd3+ ion. Appl Catal B 243:106–120

    CAS  Google Scholar 

  52. Fang M, Chen Z, Liu Y, Quan J, Yang C, Zhu L, Xu Q, Xu Q (2018) Design and synthesis of novel sandwich-type C@TiO2@C hollow microspheres as efficient sulfur hosts for advanced lithium–sulfur batteries. J Mater Chem A 6:1630–1638

    CAS  Google Scholar 

  53. Yoon M, Seo M, Jeong C, Jang JH, Jeon KS (2005) Synthesis of liposome-templated titania nanodisks: optical properties and photocatalytic activities. Chem Mater 17:6069–6079

    CAS  Google Scholar 

  54. Hao J, Zhang S, Ren F, Wang Z, Lei J, Wang X, Cheng T, Li L (2017) Synthesis of TiO2@g-C3N4 core-shell nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light. J Colloid Interface Sci 508:419–425

    CAS  PubMed  Google Scholar 

  55. Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR (2014) Highly reactive 001 facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale 6:1946–2008

    CAS  PubMed  Google Scholar 

  56. Niu M, Huang F, Cui L, Huang P, Yu Y, Wang Y (2010) Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures. ACS Nano 4:681–688

    CAS  PubMed  Google Scholar 

  57. Opoku F, Govender KK, van Sittert CGCE, Govender PP (2017) Understanding the mechanism of enhanced charge separation and visible light photocatalytic activity of modified wurtzite ZnO with nanoclusters of ZnS and graphene oxide: from a hybrid density functional study. New J Chem 41:8140–8155

    CAS  Google Scholar 

  58. Cao X, Zhao X, Hu J, Chen Z (2020) First-principles investigation of the electronic properties of the Bi2O4(101)/BiVO4(010) heterojunction towards more efficient solar water splitting. Phys Chem Chem Phys 22:2449–2456

    CAS  PubMed  Google Scholar 

  59. Wang B, Luo X, Chang J, Chen X, Yuan H, Chen H (2018) Efficient charge separation and visible-light response in bilayer HfS2-based van der Waals heterostructures. RSC Adv 8:18889–18895

    CAS  Google Scholar 

  60. Opoku F, Govender KK, van Sittert CGCE, Govender PP (2018) Hybrid DFT study of MWCNT/Zr-doped SrTiO3 heterostructure: Hydrogen production, electronic properties and charge Carrier mediator role of Zr4+ ion. Int. J. Hydrogen Energy 43:22253–22264

    CAS  Google Scholar 

  61. Leung T, Chan C, Hu C, Yu J, Wong P (2008) Photocatalytic disinfection of marine bacteria using fluorescent light. Water Res 42:4827–4837

    CAS  PubMed  Google Scholar 

  62. Wang Q, Fan C, Li G, Luo J, Li B (2019) Unique 1D/3D K2Ti6O13/TiO2 micro-nano heteroarchitectures: controlled hydrothermal crystal growth and enhanced photocatalytic performance for water purification. Catal Sci Technol 9:7023–7033

    CAS  Google Scholar 

  63. Liu J, Olds D, Peng R, Yu L, Foo GS, Qian S, Keum J, Guiton BS, Wu Z, Page K (2017) Quantitative analysis of the morphology of 101 and 001 faceted anatase TiO2 nanocrystals and its implication on photocatalytic activity. Chem Mater 29:5591–5604

    CAS  Google Scholar 

  64. Li Z, Fang Y, Zhan X, Xu S (2013) Facile preparation of squarylium dye sensitized TiO2 nanoparticles and their enhanced visible-light photocatalytic activity. J Alloys Compd 564:138–142

    CAS  Google Scholar 

  65. Wang P (2017) Ag–AgBr/TiO2/RGO nanocomposite: Synthesis, characterization, photocatalytic activity and aggregation evaluation. J Environ Sci 56:202–213

    CAS  Google Scholar 

  66. Pu S, Zhu R, Ma H, Deng D, Pei X, Qi F, Chu W (2017) Facile in-situ design strategy to disperse TiO2 nanoparticles on graphene for the enhanced photocatalytic degradation of rhodamine. Appl Catal B 218:208–219

    CAS  Google Scholar 

  67. Zhang J-J, Liu X, Ye T, Zheng G-P, Zheng X-C, Liu P, Guan X-X (2017) Novel assembly of homogeneous reduced graphene oxide-doped mesoporous TiO2 hybrids for elimination of Rhodamine-B dye under visible light irradiation. J Alloys Compd 698:819–827

    CAS  Google Scholar 

  68. Shukla P, Sun H, Wang S, Ang HM, Tadé MO (2011) Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment. Catal Today 175:380–385

    CAS  Google Scholar 

  69. He X, Fang H, Gosztola DJ, Jiang Z, Jena P, Wang W-N (2019) Mechanistic insight into photocatalytic pathways of MIL-100(Fe)/TiO2 composites. ACS Appl Mater Interfaces 11:12516–12524

    CAS  PubMed  Google Scholar 

  70. Yuan J, Zhang X, Li H, Wang K, Gao S, Yin Z, Yu H, Zhu X, Xiong Z, Xie Y (2015) TiO2/SnO2 double-shelled hollow spheres-highly efficient photocatalyst for the degradation of rhodamine B. Catal Commun 60:129–133

    CAS  Google Scholar 

  71. Korake P, Kadam A, Garadkar K (2014) Photocatalytic activity of Eu3+-doped ZnO nanorods synthesized via microwave assisted technique. J Rare Earths 32:306–313

    CAS  Google Scholar 

  72. Coelho M, De Lima G, Augusti R, Maria D, Ardisson J (2010) New materials for photocatalytic degradation of Indigo Carmine-Synthesis, characterization and catalytic experiments of nanometric tin dioxide-based composites. Appl Catal B 96:67–71

    CAS  Google Scholar 

  73. Coelho M, De Andrade F, De Lima G, Augusti R, Ferreira M, Maria D, Ardisson J (2011) Preparation of a new composite by reaction of SnBu3Cl with TiCl4 in the presence of NH4OH photocatalytic degradation of indigo carmine. Appl Organomet Chem 25:220–225

    CAS  Google Scholar 

  74. Hernández-Gordillo A, Bizarro M, Gadhi TA, Martínez A, Tagliaferro A, Rodil SE (2019) Good practices for reporting the photocatalytic evaluation of a visible-light active semiconductor: Bi2O3, a case study. Catal Sci Technol 9:1476–1496

    Google Scholar 

  75. Neto JSG, Satyro S, Saggioro EM, Dezotti M (2020) Investigation of mechanism and kinetics in the TiO2 photocatalytic degradation of Indigo Carmine dye using radical scavengers. Int J Environ Sci Technol (Tehran). https://doi.org/10.1007/s13762-020-02842-6

    Article  Google Scholar 

  76. Benalioua B, Mansour M, Bentouami A, Boury B, Elandaloussi EH (2015) The layered double hydroxide route to Bi–Zn co-doped TiO2 with high photocatalytic activity under visible light. J Hazard Mater 288:158–167

    CAS  PubMed  Google Scholar 

  77. Liu X, Dang R, Dong W, Huang X, Tang J, Gao H, Wang G (2017) A sandwich-like heterostructure of TiO2 nanosheets with MIL-100(Fe): a platform for efficient visible-light-driven photocatalysis. Appl Catal B 209:506–513

    CAS  Google Scholar 

Download references

Acknowledgements

The authors will like to acknowledge the financial contributions from the Faculty of Science; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa; and the National Research Foundation (TTK170405225933). This work was performed using the computational facilities provided by the Centre for High Performance Computing (CHPC), Cape Town, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuel Osei-Bonsu Oppong or Francis Opoku.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oppong, S.OB., Opoku, F. & Govender, P.P. Remarkable Enhancement of Eu–TiO2–GO Composite for Photodegradation of Indigo Carmine: A Design Method Based on Computational and Experimental Perspectives. Catal Lett 151, 1111–1126 (2021). https://doi.org/10.1007/s10562-020-03386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03386-7

Keywords

Navigation