Skip to main content
Log in

Isolation and application of bacteriophages alone or in combination with nisin against planktonic and biofilm cells of Staphylococcus aureus

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is a notorious foodborne pathogen since it has ability to produce variety of toxins including heat-stable enterotoxin, form biofilm, and acquire resistance to antibiotics. Biocontrol of foodborne pathogens by lytic bacteriophages garners increasing interest from both researchers and food industry. In the present study, 29 phages against S. aureus were successfully isolated from chicken, pork, and fish. Characterization of the isolates revealed that phage SA46-CTH2 belonging to Podoviridae family had a number of features suitable for food industry applications such as wide host range, short latent period, large burst size, high stress tolerance, and a genome free of virulence genes. Furthermore, phage SA46-CTH2 alone or in combination with nisin exhibited great efficacy in reducing planktonic and biofilm cells of S. aureus at various conditions tested. The combination of phage SA46-CTH2 and nisin was also found to be able to inhibit the regrowth of S. aureus at both 37 and 24 °C.

Key points

• A total of 29 S. aureus phages were successfully isolated from fish, pork, and chicken products.

• Phage SA46-CTH2 was characterized by host range, morphology, and genome sequencing.

• SA46-CTH2 significantly reduced both planktonic and biofilm cells of S. aureus.

• Combination of SA46-CTH2 and nisin inhibited the regrowth of S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abatángelo V, Peressutti Bacci N, Boncompain CA, Amadio AF, Carrasco S, Suárez CA, Morbidoni HR (2017) Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains. PLoS One 12:e0181671–e0181671

    PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2010) Lysis from without. Bacteriophage 1:46–49. https://doi.org/10.4161/bact.1.1.13980

    Article  Google Scholar 

  • Ackermann H-W (2009) Phage classification and characterization. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: methods and protocols, Isolation, characterization, and interactions, vol 1. Humana Press, Totowa, NJ, pp 127–140

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alves DR, Gaudion A, Bean JE, Perez Esteban P, Arnot TC, Harper DR, Kot W, Hansen LH, Enright MC, Jenkins ATA (2014) Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol 80:6694–6703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asao T, Kumeda Y, Kawai T, Shibata T, Oda H, Haruki K, Nakazawa H, Kozaki S (2003) An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin a in the incriminated milk and powdered skim milk. Epidemiol Infect 130:33–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266

    CAS  PubMed  Google Scholar 

  • Azimirad M, Dezfulian A, Alebouyeh M, Bahreiny Esfehani R, Shahrokh S, Zali MR (2017) Infection with enterotoxigenic Staphylococcus aureus as a concern in patients with gastroenteritis. J Glob Antimicrob Resist 9:111–114

    PubMed  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    PubMed  PubMed Central  Google Scholar 

  • Balciunas EM, Castillo Martinez FA, Todorov SD, de Franco BDGM, Converti A, de Oliveira RPS (2013) Novel biotechnological applications of bacteriocins: a review. Food Control 32:134–142

    CAS  Google Scholar 

  • Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R (2015) Bio-control of Salmonella Enteritidis in foods using bacteriophages. Viruses 7:4836–4853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann AR, Martin SE, Feng H (2009) Removal of Listeria monocytogenes biofilms from stainless steel by use of ultrasound and ozone. J Food Prot 72:1306–1309

    PubMed  Google Scholar 

  • Bigot B, Lee W-J, McIntyre L, Wilson T, Hudson JA, Billington C, Heinemann JA (2011) Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol 28:1448–1452

    CAS  PubMed  Google Scholar 

  • Briandet R, Lacroix-Gueu P, Renault M, Lecart S, Meylheuc T, Bidnenko E, Steenkeste K, Bellon-Fontaine M-N, Fontaine-Aupart M-P (2008) Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Appl Environ Microbiol 74:2135–2143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burrowes B, Harper DR, Anderson J, McConville M, Enright MC (2011) Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Rev Anti-Infect Ther 9:775–785

    PubMed  Google Scholar 

  • Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25:119–120

    CAS  PubMed  Google Scholar 

  • Chan BK, Abedon ST (2015) Bacteriophages and their enzymes in biofilm control. Curr Pharm Des 21:85–99 doi: CPD-EPUB-62166 [pii]

    CAS  PubMed  Google Scholar 

  • Chen H, Zhong Q (2017) Lactobionic acid enhances the synergistic effect of nisin and thymol against Listeria monocytogenes Scott A in tryptic soy broth and milk. Int J Food Microbiol 260:36–41

    CAS  PubMed  Google Scholar 

  • Cornelissen A, Ceyssens P-J, T’Syen J, Van Praet H, Noben J-P, Shaburova OV, Krylov VN, Volckaert G, Lavigne R (2011) The T7-related Pseudomonas putida phage phi15 displays virion-associated biofilm degradation properties. PLoS One 6:e18597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelissen A, Ceyssens P-J, Krylov VN, Noben J-P, Volckaert G, Lavigne R (2012) Identification of EPS-degrading activity within the tail spikes of the novel Pseudomonas putida phage AF. Virology 434:251–256

    CAS  PubMed  Google Scholar 

  • Cui Z, Guo X, Dong K, Zhang Y, Li Q, Zhu Y, Zeng L, Tang R, Li L (2017) Safety assessment of Staphylococcus phages of the family Myoviridae based on complete genome sequences. Sci Rep 7:41259

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer E, Zwartkruis-Nahuis JTM, Wit B, Huijsdens XW, de Neeling AJ, Bosch T, van Oosterom RAA, Vila A, Heuvelink AE (2009) Prevalence of methicillin-resistant Staphylococcus aureus in meat. Int J Food Microbiol 134:52–56

    PubMed  Google Scholar 

  • Deghorain M, Van Melderen L (2012) The staphylococci phages family: an overview. Viruses 4:3316–3335

    PubMed  PubMed Central  Google Scholar 

  • Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69:193–202

    CAS  PubMed  Google Scholar 

  • Duc HM, Son HM, Honjoh K, Miyamoto T (2018) Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat. LWT 91:353–360 . doi: https://doi.org/10.1016/J.LWT.2018.01.072

  • Dunne M, Loessner MJ (2019) Modified bacteriophage tail fiber proteins for labeling, immobilization, capture, and detection of bacteria. Methods Mol Biol 1918:67–86

    CAS  PubMed  Google Scholar 

  • Fenton M, Keary R, McAuliffe O, Ross RP, O’Mahony J, Coffey A (2013) Bacteriophage-derived peptidase CHAP(K) eliminates and prevents staphylococcal biofilms. Int J Microbiol 2013:625341

    PubMed  PubMed Central  Google Scholar 

  • Fessler AT, Kadlec K, Hassel M, Hauschild T, Eidam C, Ehricht R, Monecke S, Schwarz S (2011) Characterization of methicillin-resistant Staphylococcus aureus isolates from food and food products of poultry origin in Germany. Appl Environ Microbiol 77:7151–7157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Field D, O’ Connor R, Cotter PD, Ross RP, Hill C (2016) In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Front Microbiol 7:508

  • Fujikawa H, Morozumi S (2006) Modeling Staphylococcus aureus growth and enterotoxin production in milk. Food Microbiol 23:260–267

    CAS  PubMed  Google Scholar 

  • Furuta M, Nasu T, Umeki K, Hoang Minh D, Honjoh K-I, Miyamoto T (2017) Characterization and application of lytic bacteriophages against Campylobacter jejuni isolated from poultry in Japan. Biocontrol Sci 22:213–221

    CAS  PubMed  Google Scholar 

  • García P, Madera C, Martínez B, Rodríguez A, Evaristo Suárez J (2009) Prevalence of bacteriophages infecting Staphylococcus aureus in dairy samples and their potential as biocontrol agents. J Dairy Sci 92:3019–3026

    PubMed  Google Scholar 

  • Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14

    CAS  PubMed  Google Scholar 

  • Gill JJ, Sabour PM, Leslie KE, Griffiths MW (2006) Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. J Appl Microbiol 101:377–386

    CAS  PubMed  Google Scholar 

  • Głowacka-Rutkowska A, Gozdek A, Empel J, Gawor J, Żuchniewicz K, Kozińska A, Dębski J, Gromadka R, Łobocka M (2019) The ability of lytic staphylococcal podovirus vB_SauP_phiAGO1.3 to coexist in equilibrium with its host facilitates the selection of host mutants of attenuated virulence but does not preclude the phage antistaphylococcal activity in a nematode infection model. Front Microbiol 9:3227

    PubMed  PubMed Central  Google Scholar 

  • Gou J, Jung L-S, Lee S-H, Ahn J (2011) Effects of nisin and acid on the inactivation and recovery of Listeria monocytogenes biofilms treated by high hydrostatic pressure. Food Sci Biotechnol 20:1361

    CAS  Google Scholar 

  • Gram L, Bagge-Ravn D, Ng YY, Gymoese P, Vogel BF (2007) Influence of food soiling matrix on cleaning and disinfection efficiency on surface attached Listeria monocytogenes. Food Control 18:1165–1171

    CAS  Google Scholar 

  • Guenther S, Huwyler D, Richard S, Loessner MJ (2009) Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol 75:93–100

    CAS  PubMed  Google Scholar 

  • Gutierrez D, Vandenheuvel D, Martinez B, Rodriguez A, Lavigne R, Garcia P (2015) Two phages, phiIPLA-RODI and phiIPLA-C1C, lyse mono- and dual-species staphylococcal biofilms. Appl Environ Microbiol 81:3336–3348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez D, Rodríguez-Rubio L, Martínez B, Rodríguez A, García P (2016) Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol 7:825. https://doi.org/10.3389/fmicb.2016.00825

    Article  PubMed  PubMed Central  Google Scholar 

  • Han JE, Kim JH, Hwang SY, Choresca CH, Shin SP, Jun JW, Chai JY, Park YH, Park SC (2013) Isolation and characterization of a Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis. Res Vet Sci 95:758–763

    CAS  PubMed  Google Scholar 

  • Harper DR, Parracho HMRT, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S (2014) Bacteriophages and biofilms. Antibiotics 3:270–284

    CAS  PubMed Central  Google Scholar 

  • Hoang Minh D, Hoang Minh S, Honjoh K, Miyamoto T (2016) Isolation and bio-control of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli contamination in raw chicken meat by using lytic bacteriophages. LWT Food Sci Technol 71:339–346

    CAS  Google Scholar 

  • Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P (2018) Structure and genome ejection mechanism of phage P68 infecting Staphylococcus aureus

  • Hyman P (2019) Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals (Basel) 12

  • Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:1501–1510

    PubMed  PubMed Central  Google Scholar 

  • Jung DS, Bodyfelt FW, Daeschel MA (1992) Influence of fat and emulsifiers on the efficacy of nisin in inhibiting Listeria monocytogenes in fluid milk. J Dairy Sci 75:387–393

    CAS  PubMed  Google Scholar 

  • Keen EC, Adhya SL (2015) Phage therapy: current research and applications. Clin Infect Dis An Off Publ Infect Dis Soc Am 61:141–142

    Google Scholar 

  • Kitamoto M, Kito K, Niimi Y, Shoda S, Takamura A, Hiramatsu T, Akashi T, Yokoi Y, Hirano H, Hosokawa M, Yamamoto A, Agata N, Hamajima N (2009) Food poisoning by Staphylococcus aureus at a university festival. Jpn J Infect Dis 62:242–243

    PubMed  Google Scholar 

  • Klumpp J, Loessner MJ (2013a) New research on bacteriophages and food safety. Advances in Microbial Food Safety. Elsevier, In, pp 321–339

    Google Scholar 

  • Klumpp J, Loessner MJ (2013b) 16 - New research on bacteriophages and food safety. In: Sofos J (ed) Advances in microbial food safety. Woodhead publishing, pp 321–339

  • Kraushaar B, Thanh MD, Hammerl JA, Reetz J, Fetsch A, Hertwig S (2013) Isolation and characterization of phages with lytic activity against methicillin-resistant Staphylococcus aureus strains belonging to clonal complex 398. Arch Virol 158:2341–2350

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595

    CAS  PubMed  Google Scholar 

  • Kwiatek M, Parasion S, Mizak L, Gryko R, Bartoszcze M, Kocik J (2012) Characterization of a bacteriophage, isolated from a cow with mastitis, that is lytic against Staphylococcus aureus strains. Arch Virol 157:225–234

    CAS  PubMed  Google Scholar 

  • Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z (2017) Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol 101:3103–3119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y-D, Park J-H (2015) Characterization and application of phages isolated from sewage for reduction of Escherichia coli O157:H7 in biofilm. LWT Food Sci Technol 60:571–577

    CAS  Google Scholar 

  • Leistner L (2000) Basic aspects of food preservation by hurdle technology. In: International Journal of Food Microbiology

  • Li L, Zhang Z (2014) Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Mol Biol Rep 41:5829–5838

    CAS  PubMed  Google Scholar 

  • Linden SB, Zhang H, Heselpoth RD, Shen Y, Schmelcher M, Eichenseher F, Nelson DC (2015) Biochemical and biophysical characterization of PlyGRCS, a bacteriophage endolysin active against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 99:741–752

    CAS  PubMed  Google Scholar 

  • Liu H, Niu YD, Meng R, Wang J, Li J, Johnson RP, McAllister TA, Stanford K (2015) Control of Escherichia coli O157 on beef at 37, 22 and 4 °C by T5-, T1-, T4-and O1-like bacteriophages. Food Microbiol 51:69–73

    CAS  PubMed  Google Scholar 

  • Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114

    PubMed  PubMed Central  Google Scholar 

  • Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ly-Chatain MH (2014) The factors affecting effectiveness of treatment in phages therapy. Front Microbiol 5:51

    PubMed  PubMed Central  Google Scholar 

  • Martinez B, Obeso JM, Rodriguez A, Garcia P (2008) Nisin-bacteriophage crossresistance in Staphylococcus aureus. Int J Food Microbiol 122:253–258

    CAS  PubMed  Google Scholar 

  • Melo LDR, Brandao A, Akturk E, Santos SB, Azeredo J (2018) Characterization of a new Staphylococcus aureus Kayvirus harboring a lysin active against biofilms. Viruses 10. https://doi.org/10.3390/v10040182

  • Merabishvili M, Pirnay J-P, De Vos D (2018) Guidelines to compose an ideal bacteriophage cocktail. Methods Mol Biol 1693:99–110

    CAS  PubMed  Google Scholar 

  • Mills S, Ross RP, Hill C (2017) Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiol Rev

  • Moye ZD, Woolston J, Sulakvelidze A (2018) Bacteriophage applications for food production and processing. Viruses 10:205

    PubMed Central  Google Scholar 

  • Nakagawa H, Arisaka F, Ishii S (1985) Isolation and characterization of the bacteriophage T4 tail-associated lysozyme. J Virol 54:460–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Flaherty S, Coffey A, Meaney WJ, Fitzgerald GF, Ross RP (2005) Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett Appl Microbiol 41:274–279

    PubMed  Google Scholar 

  • O’Flynn G, Ross RP, Fitzgerald GF, Coffey A (2004) Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl Environ Microbiol 70:3417–3424

    PubMed  PubMed Central  Google Scholar 

  • Omoe K, Hu D-L, Takahashi-Omoe H, Nakane A, Shinagawa K (2003) Identification and characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds of plasmids. Infect Immun 71:6088–6094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Özel B, Şimşek Ö, Akçelik M, Saris PEJ (2018) Innovative approaches to nisin production. Appl Microbiol Biotechnol

  • Parasion S, Kwiatek M, Gryko R, Mizak L, Malm A (2014) Bacteriophages as an alternative strategy for fighting biofilm development. Pol J Microbiol 63:137–145

    PubMed  Google Scholar 

  • Pereira C, Moreirinha C, Lewicka M, Almeida P, Clemente C, Cunha Â, Delgadillo I, Romalde JL, Nunes ML, Almeida A (2016) Bacteriophages with potential to inactivate Salmonella Typhimurium: use of single phage suspensions and phage cocktails. Virus Res 220:179–192

    CAS  PubMed  Google Scholar 

  • Pereira C, Moreirinha C, Lewicka M, Almeida P, Clemente C, Romalde JL, Nunes ML, Almeida A (2017) Characterization and in vitro evaluation of new bacteriophages for the biocontrol of Escherichia coli. Virus Res 227:171–182

    CAS  PubMed  Google Scholar 

  • Pires DP, Oliveira H, Melo LDR, Sillankorva S, Azeredo J (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100:2141–2151

    CAS  PubMed  Google Scholar 

  • Riva A, Borghi E, Cirasola D, Colmegna S, Borgo F, Amato E, Pontello MM, Morace G (2015) Methicillin-resistant Staphylococcus aureus in raw milk: prevalence, SCCmec typing, enterotoxin characterization, and antimicrobial resistance patterns. J Food Prot 78:1142–1146

    CAS  PubMed  Google Scholar 

  • Rohde C, Resch G, Pirnay J-P, Blasdel BG, Debarbieux L, Gelman D, Gorski A, Hazan R, Huys I, Kakabadze E, Lobocka M, Maestri A, de Almeida GMF, Makalatia K, Malik DJ, Maslanova I, Merabishvili M, Pantucek R, Rose T, Stverakova D, Van Raemdonck H, Verbeken G, Chanishvili N (2018) Expert opinion on Three thage therapy related topics: bacterial phage resistance, phage training and prophages in bacterial production strains. Viruses 10

  • Sadekuzzaman M, Yang S, Mizan MFR, Ha S-D (2017) Reduction of Escherichia coli O157:H7 in biofilms using bacteriophage BPECO 19. J Food Sci 82:1433–1442

    CAS  PubMed  Google Scholar 

  • Schelin J, Wallin-Carlquist N, Cohn MT, Lindqvist R, Barker GC, Rådström P (2011) The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence 2:580–592

    PubMed  PubMed Central  Google Scholar 

  • Sharma M, Ryu JH, Beuchat LR (2005) Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage. J Appl Microbiol 99:449–459

    CAS  PubMed  Google Scholar 

  • Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT Food Sci Technol 43:573–583

    Google Scholar 

  • Singh VP (2018) Recent approaches in food bio-preservation-a review. Open Vet. J

  • Singh S, Shalini R (2016) Effect of hurdle technology in food preservation: a review. Crit Rev Food Sci Nutr

  • Siringan P, Connerton PL, Payne RJH, Connerton IF (2011) Bacteriophage-mediated dispersal of Campylobacter jejuni biofilms. Appl Environ Microbiol 77:3320–3326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Son JS, Lee SJ, Jun SY, Yoon SJ, Kang SH, Paik HR, Kang JO, Choi YJ (2010) Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol 86:1439–1449

    CAS  PubMed  Google Scholar 

  • Son HM, Duc HM, Masuda Y, Honjoh K-I, Miyamoto T (2018) Application of bacteriophages in simultaneously controlling Escherichia coli O157:H7 and extended-spectrum beta-lactamase producing Escherichia coli. Appl Microbiol Biotechnol 102:10259–10271

    CAS  PubMed  Google Scholar 

  • Soni KA, Nannapaneni R (2010) Removal of Listeria monocytogenes biofilms with bacteriophage P100. J Food Prot 73:1519–1524

    PubMed  Google Scholar 

  • Sunagar R, Patil SA, Chandrakanth RK (2010) Bacteriophage therapy for Staphylococcus aureus bacteremia in streptozotocin-induced diabetic mice. Res Microbiol 161:854–860

    PubMed  Google Scholar 

  • Takac M, Blasi U (2005) Phage P68 virion-associated protein 17 displays activity against clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 49:2934–2940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomat D, Casabonne C, Aquili V, Balague C, Quiberoni A (2018) Evaluation of a novel cocktail of six lytic bacteriophages against Shiga toxin-producing Escherichia coli in broth, milk and meat. Food Microbiol 76:434–442

    CAS  PubMed  Google Scholar 

  • Wang Z, Zheng P, Ji W, Fu Q, Wang H, Yan Y, Sun J (2016) SLPW: a virulent bacteriophage targeting methicillin-resistant Staphylococcus aureus in vitro and in vivo. Front Microbiol 7:934

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Baloch Z, Jiang T, Zhang C, Peng Z, Li F, Fanning S, Ma A, Xu J (2017) Enterotoxigenicity and antimicrobial resistance of Staphylococcus aureus isolated from retail food in China. Front Microbiol 8:2256

  • Wiedemann I, Breukink E, Van Kraaij C, Kuipers OP, Bierbaum G, De Kruijff B, Sahl HG (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem

  • Yan J, Mao J, Xie J (2014) Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs 28:265–274

    CAS  PubMed  Google Scholar 

  • Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Bao H, Wei C, Zhang H, Zhou Y, Wang R (2015) Characterization and partial genomic analysis of a lytic Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis in mid-east of China. Virus Genes 50:111–117

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kyushu University, MEXT, and Kao Corporation for their supports.

Author information

Authors and Affiliations

Authors

Contributions

HMD, HMS, and TM conceived and designed research. HMD, HMS, JS, and YM conducted experiments. HMD and HMS analyzed data. HMD, HMS, TM, KH, and PHN wrote manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Takahisa Miyamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duc, H.M., Son, H.M., Ngan, P.H. et al. Isolation and application of bacteriophages alone or in combination with nisin against planktonic and biofilm cells of Staphylococcus aureus. Appl Microbiol Biotechnol 104, 5145–5158 (2020). https://doi.org/10.1007/s00253-020-10581-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10581-4

Keywords

Navigation