Skip to main content
Log in

A putative transcription factor LFC1 negatively regulates development and yield of winter mushroom

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Basidioma is the fruiting body of mushroom species. The deep understanding on the mechanism of basidioma development is valuable for mushroom breeding and cultivation. From winter mushroom (Flammulina velutipes), one of the top five industrially cultivated mushrooms, a novel putative Zn(II)2Cys6 transcription factor LFC1 with negative regulatory function in basidioma development was identified. The transcript level of lfc1 was dramatically decreased during basidioma development. Neither overexpression nor knockdown of lfc1 affected hyphal vegetative growth. However, knockdown of lfc1 could promote basidioma development and shorten cultivation time by 2 days, while overexpression of lfc1 delayed the optimal harvest time by 3 days. In the lfc1 knockdown strain, in which the lfc1 expression was reduced by 72%, mushroom yield and biological efficiency could be increased at least by 24%. Knockdown of lfc1 did not affect the shape of caps but significantly increased basidioma length and number, while its overexpression did not affect basidioma length but dramatically reduced basidioma number. In addition, rather than producing basidiomata with round caps as in wild type, the caps of basidiomata in the lfc1 overexpression mutants were significantly larger and the cap edge was wrinkled. RNA-seq analysis revealed that 455 genes had opposite transcriptional responses to lfc1 overexpression and knockdown. Some of them were previously reported as genes involved in basidioma development, including 3 hydrophobin encoding genes, 2 lectin encoding genes, FVFD16, an Eln2 ortholog encoding gene, and 3 genes encoding membrane components. As LFC1 homologs are widely present in mushroom species, lfc1 can be useful in mushroom breeding.

Key Points

• A novel transcription factor LFC1 negatively regulates fruiting in winter mushroom

• LFC1 regulated transcription of more than 400 genes.

• Reduction of LFC1 expression could shorten cultivation time and increase yield.

• lfc1 could be a potentially useful reference gene for mushroom breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anne S (2019) Mushroom as a strategy to reduce food insecurity in Tharaka Nthi County. IOSR-JHSS 24(1):47–52. https://doi.org/10.9790/0837-2401104752

    Article  Google Scholar 

  • Arima T, Yamamoto M, Hirata A, Kawano S, Kamada T (2004) The eln3 gene involved in fruiting body morphogenesis of Coprinus cinereus encodes a putative membrane protein with a general glycosyltransferase domain. Fungal Genet Biol 41(8):805–812. https://doi.org/10.1016/j.fgb.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  • Boulianne RP, Liu Y, Aebi M, Lu BC, Kües U (2000) Fruiting body development in Coprinus cinereus: regulated expression of two galectins secreted by a non classical pathway. Microbiology 146:1841–1853

    Article  CAS  PubMed  Google Scholar 

  • Brown AJ, Casselton LA (2001) Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet 17(7):393–400

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Endo H, Kajiwara S, Tsunoka O, Shishido K (1994) A novel cDNA, priBc, encoding a protein with a Zn(II)2CysG zinc cluster DNA-binding motif, derived from the basidiomycete Lentinus edodes. Gene 139(1):117–121

    Article  CAS  PubMed  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435

    Article  PubMed  PubMed Central  Google Scholar 

  • Groot PWJD, Schaap PJ, Sonnenberg ASM, Visser J, van Griensven LJLDV (1996) The Agaricus bisporus hypA gene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development. J Microbiol Btotechn 257:1008–1018

    Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Harith N, Abdullah N, Sabaratnam V (2014) Cultivation of Flammulina velutipes mushroom using various agro-residues as a fruiting substrate. Pesq Agropec Bras 49(3):181–188. https://doi.org/10.1590/S0100-204X2014000300004

    Article  Google Scholar 

  • Hatoh K, Izumitsu K, Morita A, Shimizu K, Ohta A, Kawai M, Yamanaka T, Neda H, Ota Y, Tanaka C (2013) Transformation of the mushroom species Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa by an Agrobacterium-mediated method using a universal transformation plasmid. Mycoscience 54(1):8–12. https://doi.org/10.1016/j.myc.2012.08.002

    Article  CAS  Google Scholar 

  • Higgins C, Margot H, Warnquist S, Obeysekare E, Mehta K (2017) Mushroom cultivation in the developing world: a comparison of cultivation technologies. 2017 IEEE global humanitarian technology conference (GHTC), San Jose, CA, USA, 19–22

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36(2):W5–W9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko T, Oguri S, S-i K, Nagata Y (1993) Developmental appearance of lectin during fruit body formation in Pleurotus cornucopiae. J Gen Appl Microbiol 39(1):83–90

    Article  CAS  Google Scholar 

  • Kim D-Y, Azuma T-N (1999) Cloning of a gene specifically expressed during early stage of fruiting body formation in Flammulina velutipes. Kor J Mycol 27(3):187–190

    CAS  Google Scholar 

  • Kim JK, Park YJ, Kong WS, Kang HW (2010) Highly efficient electroporation-mediated transformation into edible mushroom Flammulina velutipes. Mycobiology 38(4):331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015a) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Ha B-S, Ro H-S (2015b) Current technologies and related issues for mushroom transformation. Mycobiology 43(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H-I, Lee C-S, Park Y-J (2016) Further characterization of hydrophobin genes in genome of Flammulina velutipes. Mycoscience 57(5):320–325. https://doi.org/10.1016/j.myc.2016.04.004

    Article  Google Scholar 

  • Kosugi S, Hasebe M, Tomita M, Yanagaw H (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci U S A 106(25):10171–10176. https://doi.org/10.1073/pnas.0900604106

    Article  PubMed  PubMed Central  Google Scholar 

  • Krizsán K, Almási É, Merényi Z, Sahu N, Virágh M, Kószó T, Mondo S, Kiss B, Bálint B, Kües U, Barry K, Cseklye J, Hegedüs B, Henrissat B, Johnson J, Lipzen A, Ohm RA, Nagy I, Pangilinan J, Yan J, Xiong Y, Grigoriev IV, Hibbett DS, Nagy LG (2019) Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proc Natl Acad Sci U S A 116(15):7409–7418. https://doi.org/10.1073/pnas.1817822116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kües U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54(2):141–152

    Article  PubMed  Google Scholar 

  • Kuo C-Y, Chou S-Y, Huang C-T (2004) Cloning of glyceraldehyde-3-phosphate dehydrogenase gene and use of the gpd promoter for transformation in Flammulina velutipes. Appl Microbiol Biotechnol 65(5):593–599

    Article  CAS  PubMed  Google Scholar 

  • Lehr NA, Wang Z, Li N, Hewitt DA, López-Giróáldez F, Trail F, Townsend JP (2014) Gene expression differences among three Neurospora species reveal genes required for sexual reproduction in Neurospora crassa. PLoS One 9(10):e110398. https://doi.org/10.1371/journal.pone.0110398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y-J, Huang L-H, Huang C-T (2013) Enhancement of heterologous gene expression in Flammulina velutipes using polycistronic vectors containing a viral 2A cleavage sequence. PLoS One 8(3):e59099. https://doi.org/10.1371/journal.pone.0059099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Wang W, Chen B-Z, Xie B-G (2015) Homocitrate synthase expression and lysine content in fruiting body of different developmental stages in Flammulina velutipes. Curr Microbiol 70(6):821–828. https://doi.org/10.1007/s00284-015-0791-0

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chang M, Meng J, Feng C, Wang Y (2018) A comparative proteome approach reveals metabolic changes associated with Flammulina velutipes mycelia in response to cold and light stress. J Agric Food Chem 66(14):3716–3725. https://doi.org/10.1021/acs.jafc.8b00383

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Lu Y-P, Chen R-L, Long Y, Li X, Jiang Y-J, Xie B-G (2016) A jacalin-related lectin regulated the formation of aerial mycelium and fruiting body in Flammulina velutipes. Int J Mol Sci 17(12):1884

    Article  PubMed Central  Google Scholar 

  • Luan R, Liang Y, Chen Y, Liu H, Jiang S, Che T, Wong B, Sun H (2010) Opposing developmental functions of Agrocybe aegerita galectin (AAL) during mycelia differentiation. Fungal Biol 114(8):599–608. https://doi.org/10.1016/j.funbio.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  • Lugones LG, Wösten HAB, Birkenkamp KU, Sjollema KA, Zagers J, Wessels JGH (1999) Hydrophobins line air channels in fruiting bodies of Schizophyllum commune and Agaricus bisporus. Mycol Res 103(5):635–640. https://doi.org/10.1017/s0953756298007552

    Article  CAS  Google Scholar 

  • Marchler-Bauer A, Bo Y, Han L, He J, J C, Lanczycki, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D1):200–203

  • Miyazaki Y, Tsunoka O, Shishido E (1997) Determination of the DNA-binding sequences of the Zn(II)2Cys6 zinc-cluster-containing PRIB protein, derived from the basidiomycete Lentinus edodes gene. J Biochem 122:1088–1091

    Article  CAS  PubMed  Google Scholar 

  • Muraguchi H, Kamada T (2000) A mutation in the eln2 gene encoding a cytochrome P450 of Coprinus cinereus affects mushroom morphogenesis. Fungal Genet Biol 29(1):49–59. https://doi.org/10.1006/fgbi.2000.1184

    Article  CAS  PubMed  Google Scholar 

  • Muraguchi H, Umezawa K, Niikura M, Yoshida M, Kozaki T, Ishii K, Sakai K, Shimizu M, Nakahori K, Sakamoto Y, Choi C, Ngan CY, Lindquist E, Lipzen A, Tritt A, Haridas S, Barry K, Grigoriev IV, Pukkila PJ (2015) Strand-specific RNA-seq analyses of fruiting body development in Coprinopsis cinerea. PLoS One 10(10):e0141586. https://doi.org/10.1371/journal.pone.0141586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata Y, Fujii M, Zolan ME, Kamada T (1998) Molecular analysis of pcc1, a gene that leads to A-regulated sexual morphogenesis in Coprinus cinereus. Genetics 149:1753–1761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng WL, Ng TP, Kwan HS (2000) Cloning and characterization of two hydrophobin genes differentially expressed during fruit body development in Lentinula edodes. FEMS Microbiol Lett 185(2):139–145

    Article  CAS  PubMed  Google Scholar 

  • Oguri S, Ando A, Nagata Y (1996) A novel developmental stage-specific lectin of the Pleurotus cornucopiae. J Bacteriol 178(19):5692–5698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohm RA, Jong JFD, Lugones LG, Aerts A, Kothe E, Stajich JE, Vries RPD, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kües U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FWMR, van Kuyk PA, Horton JS, Grigoriev IV, Wösten HAB (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28(9):957–963. https://doi.org/10.1038/nbt.1643

    Article  CAS  PubMed  Google Scholar 

  • Ohm RA, Jong JFD, Bekker CD, Wösten HAB, Lugones LG (2011) Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation. Mol Microbiol 81(6):1433–1445. https://doi.org/10.1111/j.1365-2958.2011.07776.x

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Yamada M, Sekiya S, Okuhara T, Taguchi G, Inatomi S, Shimosaka M (2010) Agrobacterium tumefaciens-mediated transformation of the vegetative dikaryotic mycelium of the cultivated mushroom Flammulina velutipes. Biosci Biotechnol Biochem 74(11):2327–2329. https://doi.org/10.1271/bbb.100398

    Article  CAS  PubMed  Google Scholar 

  • Park Y-J, Baek JH, Lee S, Kim C, Rhee H, Kim H, Seo J-S, Park H-R, Yoon D-E, Nam J-Y, Kim H-I, Kim J-G, Yoon H, Kang H-W, Cho J-Y, Song E-S, Sung G-H, Yoo Y-B, Lee C-S, Lee B-M, Kong W-S (2014) Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS One 9(4):e93560. https://doi.org/10.1371/journal.pone.0093560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelkmans JF, Lugones LG, Wösten HAB (2016a) Fruiting body formation in Basidiomycetes. In: Wendland J (ed) Growth, differentiation and sexuality, 3rd edn. Springer, Berlin, Heidelberg, pp387–407

  • Pelkmans JF, Vos AM, Scholtmeijer K, Hendrix E, Baars JJP, Gehrmann T, Reinders MJT, Lugones LG, Wösten HAB (2016b) The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus. Appl Microbiol Biotechnol 100(16):7151–7159. https://doi.org/10.1007/s00253-016-7574-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelkmans JF, Patil MB, Gehrmann T, Reinders MJT, Wösten HAB, Lugones LG (2017) Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth. Sci Rep 7(310):1–11. https://doi.org/10.1038/s41598-017-00483-3

    Article  CAS  Google Scholar 

  • Peñas MM, Aranguren J, Ramírez L, Pisabarro AG (2004) Structure of gene coding for the fruit body-specific hydrophobin Fbh1 of the edible basidiomycete Pleurotus ostreatus. Mycologia 96(1):75–82. https://doi.org/10.1080/15572536.2005.11832999

    Article  PubMed  Google Scholar 

  • Rahman MA, Abdullah N, Aminudin N (2015) Antioxidative effects and inhibition of human low density lipoprotein oxidation in vitro of polyphenolic compounds in Flammulina velutipes (golden needle mushroom). Oxidative Med Cell Longev 2015:403023–403033. https://doi.org/10.1155/2015/403023

    Article  Google Scholar 

  • Royse DJ, Baars J, Tan Q (2017) Current overview of mushroom production in the world. In: Zied DC and Pardo-Giménez A (ed) Edible and medicinal mushrooms: technology and applications. Wiley, New York, pp5–13

  • Ruocco M, Lanzuise S, Lombardi N, Woo SL, Vinale F, Marra R, Varlese R, Manganiello G, Pascale A, Scala V, Turrà D, Scala F, Lorito M (2015) Multiple roles and effects of a novel Trichoderma hydrophobin. Mol Plant-Microbe Interact 28(2):167–179. https://doi.org/10.1094/MPMI-07-14-0194-R

    Article  CAS  PubMed  Google Scholar 

  • Sammer D, Krause K, Gube M, Wagner K, Kothe E (2016) Hydrophobins in the life cycle of the ectomycorrhizal basidiomycete Tricholoma vaccinum. PLoS One 11(12):e0167773. https://doi.org/10.1371/journal.pone.0167773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez C (2004) Modern aspects of mushroom culture technology. Appl Microbiol Biotechnol 64(6):756–762. https://doi.org/10.1007/s00253-004-1569-7

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Chen D, Xu C, Ren A, Yu H, Zhao M (2016) Highly-efficient liposome-mediated transformation system for the basidiomycetous fungus Flammulina velutipes. J Gen Appl Microbiol 10:1–7. https://doi.org/10.2323/jgam.2016.10.003

    Article  CAS  Google Scholar 

  • Sikhakolli UR, López-Giráldez F, Li N, Common R, Townsend JP, Trail F (2012) Transcriptome analyses during fruiting body formation in Fusarium graminearum and Fusarium verticillioides reflect species life history and ecology. Fungal Genet Biol 49(8):663–673. https://doi.org/10.1016/j.fgb.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  • Swamy BM, Bhat AG, Hegde GV, Naik RS, Kulkarni S, Inamdar SR (2004) Immunolocalization and functional role of Sclerotium rolfsii lectin in development of fungus by interaction with its endogenous receptor. Glycobiology 14(11):951–957. https://doi.org/10.1093/glycob/cwh130

    Article  CAS  PubMed  Google Scholar 

  • Tao Q, Ma K, Yang Y, Wang K, Chen B, Huang Y, Han J, Bao L, Liu X, Yang Z, Yin W, Liu H (2016a) Bioactive sesquiterpenes from the edible mushroom Flammulina velutipes and their biosynthetic pathway confirmed by genome analysis and chemical evidence. J Org Chem 81:9867–9877

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, van Peer AF, Huang Q, Shao Y, Zhang L, Xie B, Jiang Y, Zhu J, Xie B (2016b) Identification of novel and robust internal control genes from Volvariella volvacea that are suitable for RT-qPCR in filamentous fungi. Sci Rep 6:29236. https://doi.org/10.1038/srep29236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Chen R, Yan J, Long Y, Tong Z, Song H, Xie B (2019) A hydrophobin gene, Hyd9, plays an important role in the formation of aerial hyphae and primordia in Flammulina filiformis. Gene 706:84–90. https://doi.org/10.1016/j.gene.2019.04.067

    Article  CAS  PubMed  Google Scholar 

  • van Peer AF, Park S-Y, Shin P-G, Jang K-Y, Yoo Y-B, Park Y-J, Lee B-M, Sung G-H, James TY, Kong W-S (2011) Comparative genomics of the mating-type loci of the mushroom Flammulina velutipes reveals widespread synteny and recent inversions. PLoS One 6(7):1–13. https://doi.org/10.1371/journal.pone.0022249

    Article  CAS  Google Scholar 

  • van Wetter M-A, Wösten HAB, Wessels JGH (2000) SC3 and SC4 hydrophobins have distinct roles in formation of aerial structures in dikaryons of Schizophyllum commune. Mol Microbiol 36(1):201–210

    Article  PubMed  Google Scholar 

  • Wang Y, Bao L, Yang X, Li L, Li S, Gao H, Yao X, Wen H, Liu H (2012) Bioactive sesquiterpenoids from the solid culture of the edible mushroom Flammulina velutipes growing on cooked rice. Food Chem 132:1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Gu B, Huang J, Jiang S, Chen Y, Yin Y, Pan Y, Yu G, Li Y, Wong BHC, Liang Y, Sun H (2013) Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One 8(2):e56686. https://doi.org/10.1371/journal.pone.0056686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Liu F, Jiang Y, Wu G, Guo L, Chen R, Chen B, Lu Y, Dai Y, Xie B (2015) The multigene family of fungal laccases and their expression in the white rot basidiomycete Flammulina velutipes. Gene 563(2):142–149. https://doi.org/10.1016/j.gene.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  • Woffelman C (2004) DNAMAN for windows, version 5.2.10: Lynon Biosoft. Institute of Molecular Plant Sciences, Netherlands: Leiden University

  • Wu T, Hu C, Xie B, Zhang L, Yan S, Wang W, Tao Y, Li S (2019) A single transcription factor (PDD1) determines development and yield of winter mushroom (Flammulina velutipes). Appl Environ Microbiol 85(24):e01735–e01719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Zhang Z, Hu C, Zhang L, Wei S, Li S (2020) A WD40 protein encoding gene Fvcpc2 positively regulates mushroom development and yield in Flammulina velutipes. Front Microbiol 11:498. https://doi.org/10.3389/fmicb.2020.00498

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang L, YingLi ZY, Luo H, Li C, Xu X, Sun C, JingyuanSong SL, He L, Sun W, Chen S (2014) Transcriptome analysis of the Ophiocordyceps sinensis fruiting body reveals putative genes involved in fruiting body development and cordycepin biosynthesis. Genomics 103(1):154–159. https://doi.org/10.1016/j.ygeno.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Gong W, Yan L, Zhu Z, Hu Z, Peng Y (2017) Biodegradation of ramie stalk by Flammulina velutipes: mushroom production and substrate utilization. AMB Express 7(1):171. https://doi.org/10.1186/s13568-017-0480-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Sakuraba S, Shibata K, Inatomi S, Okazaki M, Shimosaka M (2005) Cloning and characterization of a gene coding for a hydrophobin, Fv-hyd1, specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes. Appl Microbiol Biotechnol 67(2):240–246. https://doi.org/10.1007/s00253-004-1776-2

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka K (2017) Cultivation of mushrooms in plastic bottles and small bags. In: Zied DC and Pardo-Giménez A (ed) Edible and medicinal mushrooms: technology and applications. Wiley, New York, pp319–322

  • Yu G-J, Wang M, Huang J, Yin Y-L, Chen Y-J, Jiang S, Jin Y-X, Lan X-Q, Wong BHC, Liang Y, Sun H (2012) Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. PLoS One 7(8):e44031. https://doi.org/10.1371/journal.pone.0044031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Xia YX, Kim B, Keyhani NO (2011) Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol Microbiol 80(3):811–826. https://doi.org/10.1111/j.1365-2958.2011.07613.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ren A, Chen H, Zhao M, Shi L, Chen M, Wang H, Feng Z (2015) Transcriptome analysis and its application in identifying genes associated with fruiting body development in basidiomycete Hypsizygus marmoreus. PLoS One 10(4):e0123025. https://doi.org/10.1371/journal.pone.0123025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Ren A, Shi L, Zhu J, Jiang A, Shi D, Zhao M (2018) Functional analysis of an APSES transcription factor (GlSwi6) involved in fungal growth, fruiting body development and ganoderic-acid biosynthesis in Ganoderma lucidum. Microbiol Res 207:280–288. https://doi.org/10.1016/j.micres.2017.12.015

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (31970081), the National Key Basic Research Program of China (2014CB138302), and the special funds of Gansu Province for guiding scientific and technological innovation and development (2017zx-10).

Author information

Authors and Affiliations

Authors

Contributions

SL conceived and conducted the research. BX provided strains and genome sequences. TW performed experiments and wrote the manuscript. SL and CH edited the manuscript. SW, LZ, ZZ, and ZZ analyzed data. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Shaojie Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 549 kb)

ESM 2

(XLSX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Hu, C., Xie, B. et al. A putative transcription factor LFC1 negatively regulates development and yield of winter mushroom. Appl Microbiol Biotechnol 104, 5827–5844 (2020). https://doi.org/10.1007/s00253-020-10642-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10642-8

Keywords

Navigation