Skip to main content
Log in

Metabolomics-guided analysis reveals a two-step epimerization of deoxynivalenol catalyzed by the bacterial consortium IFSN-C1

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Deoxynivalenol (DON) is commonly found in wheat and wheat-derived foods, posing a threat to human health. Biodegradation is an efficient and eco-friendly measure for mycotoxin detoxification. Understanding the mechanism of DON biodegradation is hence of great importance. Herein, we report the application of metabolomics methods for the analysis of DON degradation by a bacterial consortium isolated from wheat leaves collected in Jiangsu Province. Metabolomics analysis combined with a nuclear magnetic resonance analysis revealed the main degradation product, 3-keto-DON, and a minor degradation product, 3-epi-DON. Further study illustrated that DON underwent a two-step epimerization through the intermediate 3-keto-DON. Sequencing analysis of the 16S rRNA metagenome of the microorganismal community suggested that the abundance of three bacterial genera, Achromobacter, Sphingopyxis, and Sphingomonas, substantially increased during the coculture of bacterial consortium and DON. Further investigation revealed that Devosia sp. might be responsible for the epimerization of 3-keto-DON. These findings shed light on the catabolic pathways of DON during biodegradation and illustrate the potential of using metabolomics approaches in biodegradation studies.

Key Points

• A bacterial consortium was isolated with good deoxynivalenol-degrading potential.

• Metabolomics approaches were successfully used to interpret the degradation pathway.

• A trace-amount degradation product was determined by metabolomics and NMR analysis.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrunhosa L, Paterson RRM, Venancio A (2010) Biodegradation of ochratoxin A for food and feed decontamination. Toxins 2(5):1078–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adpressa DA, Connolly LR, Konkel ZM, Neuhaus GF, Chang XL, Pierce BR, Smith KM, Freitag M, Loesgen S (2019) A metabolomics-guided approach to discover Fusarium graminearum metabolites after removal of a repressive histone modification. Fungal Genet Biol 132:103256

    Article  CAS  PubMed  Google Scholar 

  • Ahad R, Zhou T, Lepp D, Pauls KP (2017) Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins. BMC Biotechnol 17:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anfossi L, Giovannoli C, Baggiani C (2016) Mycotoxin detection. Curr Opin Biotechnol 37:120–126

    Article  CAS  PubMed  Google Scholar 

  • Berthiller F, Lemmens M, Werner U, Krska R, Hauser MT, Adam G, Schuhmacher R (2007) Short review: metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone in plants. Mycotoxin Res 23(2):68–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthiller F, Crews C, Dall'Asta C, Saeger SD, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J (2013) Masked mycotoxins: a review. Mol Nutr Food Res 57(1):165–186

    Article  CAS  PubMed  Google Scholar 

  • Bhat NA, Wani IA, Hamdani AM, Gani A, Masoodi F (2016) Physicochemical properties of whole wheat flour as affected by gamma irradiation. LWT--Food Sci Technol 71:175–183

    Article  CAS  Google Scholar 

  • Broberg MC, Feng Z, Xin Y, Pleijel H (2015) Ozone effects on wheat grain quality–a summary. Environ Pollut 197:203–213

    Article  CAS  PubMed  Google Scholar 

  • Carere J, Hassan YI, Lepp D, Zhou T (2018a) The enzymatic detoxification of the mycotoxin deoxynivalenol: identification of DepA from the DON epimerization pathway. Microb Biotechnol 11(6):1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Carere J, Hassan YI, Lepp D, Zhou T (2018b) The identification of DepB: an enzyme responsible for the final detoxification step in the deoxynivalenol epimerization pathway in Devosia mutans 17-2-E-8. Front Microbiol 9:1573

    Article  PubMed  PubMed Central  Google Scholar 

  • Cortina NS, Krug D, Plaza A, Revermann O, Müller R (2012) Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome. Angew Chem Int Ed 51:811–816

    Article  CAS  Google Scholar 

  • Escriva L, Font G, Manyes L (2015) In vivo toxicity studies of fusarium mycotoxins in the last decade: a review. Food Chem Toxicol 78:185–206

    Article  CAS  PubMed  Google Scholar 

  • Forsberg EM, Huan T, Rinehart D, Benton HP, Warth B, Hilmers B, Siuzdak G (2018) Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online. Nat Protoc 13:633–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartinger D, Schwartz H, Hametner C, Schatzmayr G, Haltrich D, Moll WD (2011) Enzyme characteristics of aminotransferase FumI of Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B1. Appl Microbiol Biotechnol 91:757–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan YI, He JW, Perilla N, Tang K, Karlovsky P, Zhou T (2017) The enzymatic epimerization of deoxynivalenol by Devosia mutans proceeds through the formation of 3-keto-DON intermediate. Sci Rep 7:6929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He C, Fan Y, Liu G, Zhang H (2008) Isolation and identification of a strain of Aspergillus tubingensis with deoxynivalenol biotransformation capability. Int J Mol Sci 9:2366–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He JW, Yang R, Zhou T, Boland GJ, Scott PM, Bondy GS (2015) An epimer of deoxynivalenol: purification and structure identification of 3-epi-deoxynivalenol. Food Addit Contam Part A 32:1523–1530

    Article  CAS  Google Scholar 

  • He JW, Hassan YI, Perilla N, Li XZ, Boland GJ, Zhou T (2016a) Bacterial epimerization as a route for deoxynivalenol detoxification: the influence of growth and environmental conditions. Front Microbiol 7:572

    PubMed  PubMed Central  Google Scholar 

  • He WJ, Yuan QS, Zhang YB, Guo MW, Gong AD, Zhang JB, Wu AB, Huang T, Qu B, Li HP, Liao YC (2016b) Aerobic de-epoxydation of trichothecene mycotoxins by a soil bacterial consortium isolated using in situ soil enrichment. Toxins 8(10):277

    Article  PubMed Central  CAS  Google Scholar 

  • He WJ, Zhang L, Yi SY, Tang XL, Yuan QS, Guo MW, Wu AB, Qu B, Li HP, Liao YC (2017) An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain. Sci Rep 7:9549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He WJ, Shi MM, Yang P, Huang T, Zhao Y, Wu AB, Dong WB, Li HP, Zhang JB, Liao YC (2020) A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify deoxynivalenol in wheat via epimerization in a Devosia strain. Food Chem 321:126703

    Article  CAS  PubMed  Google Scholar 

  • Hoefel D, Ho L, Aunkofer W, Monis PT, Keegan A, Newcombe G, Saint CP (2006) Cooperative biodegradation of geosmin by a consortium comprising three Gram-negative bacteria isolated from the biofilm of a sand filter column. Lett Appl Microbiol 43(4):417–423

    Article  CAS  PubMed  Google Scholar 

  • Ikunaga Y, Sato I, Grond S, Numaziri N, Yoshida S, Yamaya H, Hiradate S, Hasegawa M, Toshima H, Koitabashi M (2011) Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Appl Microbiol Biotechnol 89:419–427

    Article  CAS  PubMed  Google Scholar 

  • Karaman EF, Zeybel M, Ozden S (2020) Evaluation of the epigenetic alterations and gene expression levels of HepG2 cells exposed to zearalenone and alpha-zearalenol. Toxicol Lett 326:52–60

    Article  CAS  PubMed  Google Scholar 

  • Karlovsky P (2011) Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl Microbiol Biotechnol 91(3):491–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khaneghah AM, Martins LM, von Hertwig AM, Bertoldo R, Sant’Ana AS (2018) Deoxynivalenol and its masked forms: characteristics, incidence, control and fate during wheat and wheat based products processing-a review. Trends Food Sci Technol 71:13–24

    Article  CAS  Google Scholar 

  • King RR, McQueen RE, Levesque D, Greenhalgh R (1984) Transformation of deoxynivalenol (vomitoxin) by rumen microorganisms. J Agric Food Chem 32:1181–1183

    Article  CAS  Google Scholar 

  • Krug D, Zurek G, Schneider B, Garcia R, Müller R (2008) Efficient mining of myxobacterial metabolite profiles enabled by liquid chromatography–electrospray ionisation-time-of-flight mass spectrometry and compound-based principal component analysis. Anal Chim Acta 624:97–106

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Ryu D (2017) Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurrence. J Agric Food Chem 65:7034–7051

    Article  CAS  PubMed  Google Scholar 

  • Li MM, Guan EQ, Bian K (2015) Effect of ozone treatment on deoxynivalenol and quality evaluation of ozonised wheat. Food Addit Contam Part A 32:544–553

    Article  CAS  Google Scholar 

  • Liu Y, Li M, Bian K, Guan E, Liu Y, Lu Y (2019) Reduction of deoxynivalenol in wheat with superheated steam and its effects on wheat quality. Toxins 11:414

    Article  CAS  PubMed Central  Google Scholar 

  • Luo Y, Liu X, Li J (2018) Updating techniques on controlling mycotoxins-a review. Food Control 89:123–132

    Article  CAS  Google Scholar 

  • Ma YY, Guo HW (2008) Mini-review of studies on the carcinogenicity of deoxynivalenol. Environ Toxicol Pharmacol 25:1–9

    Article  PubMed  CAS  Google Scholar 

  • Nguyen P, Carvalho G, Reis A, Nunes OC, Reis M, Oehmen A (2017) Impact of biogenic substrates on sulfamethoxazole biodegradation kinetics by Achromobacter denitrificans strain PR1. Biodegradation 28:205–217

    Article  CAS  PubMed  Google Scholar 

  • Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald IP (2016) Toxicology of deoxynivalenol and its acetylated and modified forms. Arch Toxicol 90(12):2931–2957

    Article  CAS  PubMed  Google Scholar 

  • Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev 8(1):39–69

    Article  CAS  PubMed  Google Scholar 

  • Reis PJ, Reis AC, Ricken B, Kolvenbach BA, Manaia CM, Corvini PF, Nunes OC (2014) Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. J Hazard Mater 280:741–749

    Article  CAS  PubMed  Google Scholar 

  • Reis AC, Čvančarová M, Liu Y, Lenz M, Hettich T, Kolvenbach BA, Corvini PF-X, Nunes OC (2018) Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp. GP. Appl Microbiol Biotechnol 102(23):10299–10314

    Article  CAS  PubMed  Google Scholar 

  • Rotter BA (1996) Invited review: toxicology of deoxynivalenol (vomitoxin). J Toxicol Environ Health 48:1–34

    Article  CAS  PubMed  Google Scholar 

  • Sato I, Ito M, Ishizaka M, Ikunaga Y, Sato Y, Yoshida S, Koitabashi M, Tsushima S (2012) Thirteen novel deoxynivalenol-degrading bacteria are classified within two genera with distinct degradation mechanisms. FEMS Microbiol Lett 327(2):110–117

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Iwahashi Y (2015) Low toxicity of deoxynivalenol-3-glucoside in microbial cells. Toxins 7(1):187–200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, van der Gheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno Y, Nakayama K, Ishii K, Tashiro F, Minoda Y, Omori T, Komagata K (1983) Metabolism of T-2 toxin in Curtobacterium sp. strain 114-2. Appl Environ Microbiol 46:120–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhoutte I, Audenaert K, De Gelder L (2016) Biodegradation of mycotoxins: tales from known and unexplored worlds. Front Microbiol 7:561

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidal A, Ambrosio A, Sanchis V, Ramos AJ, Marin S (2016a) Enzyme bread improvers affect the stability of deoxynivalenol and deoxynivalenol-3-glucoside during breadmaking. Food Chem 208:288–296

    Article  CAS  PubMed  Google Scholar 

  • Vidal A, Sanchis V, Ramos AJ, Marin S (2016b) The fate of deoxynivalenol through wheat processing to food products. Curr Opin Food Sci 11:34–39

    Article  Google Scholar 

  • Wang L, Luo Y, Luo X, Wang R, Li Y, Li Y, Shao H, Chen Z (2016) Effect of deoxynivalenol detoxification by ozone treatment in wheat grains. Food Control 66:137–144

    Article  CAS  Google Scholar 

  • Wang G, Yu M, Dong F, Shi J, Xu J (2017) Esterase activity inspired selection and characterization of zearalenone degrading bacteria Bacillus pumilus ES-21. Food Control 77:57–64

    Article  CAS  Google Scholar 

  • Wang H, Mao J, Zhang Z, Zhang Q, Zhang L, Zhang W, Li P (2019a) Photocatalytic degradation of deoxynivalenol over dendritic-like α-Fe2O3 under visible light irradiation. Toxins 11:105

    Article  CAS  PubMed Central  Google Scholar 

  • Wang G, Wang Y, Ji F, Xu L, Yu M, Shi J, Xu J (2019b) Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16. Food Chem 276:436–442

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Wang G, Dai YJ, Wang Y, Lee YW, Shi JR, Xu JH (2020) Biodegradation of deoxynivalenol by a novel microbial consortium. Front Microbiol 10:2964

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson W, Dahl B, Nganje W (2018) Economic costs of fusarium head blight, scab and deoxynivalenol. World Mycotoxin J 11:1–12

    Article  Google Scholar 

  • Yu H, Zhou T, Gong J, Young C, Su X, Li XZ, Zhu H, Tsao R, Yang R (2010) Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC Microbiol 10:182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhai YY, Zhong L, Gao H, Lu ZX, Bie XM, Zhao HZ, Zhang C, Lu FX (2019) Detoxification of deoxynivalenol by a mixed culture of soil bacteria with 3-epi-deoxynivalenol as the main intermediate. Front Microbiol 10:2172

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (U1604234, 31901805, 31872914), Jiangsu Agriculture Science and Technology Innovation Fund (CX(17)1003), and Shanghai Agriculture Applied Technology Development Program, China (2019-02-08-00-12-F01148).

Author information

Authors and Affiliations

Authors

Contributions

GW and JX conceived and designed the research. GW, YW, and HM conducted experiments. GW contributed to data analysis. GW wrote the manuscript. YWL, JS, and JX reviewed and revised the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Jianrong Shi or Jianhong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, Y., Man, H. et al. Metabolomics-guided analysis reveals a two-step epimerization of deoxynivalenol catalyzed by the bacterial consortium IFSN-C1. Appl Microbiol Biotechnol 104, 6045–6056 (2020). https://doi.org/10.1007/s00253-020-10673-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10673-1

Keywords

Navigation