Skip to main content

Advertisement

Log in

Metabolic engineering of Zymomonas moblis for ethylene production from straw hydrolysate

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biological ethylene production is a promising sustainable alternative approach for fossil-based ethylene production. The high glucose utilization of Z. mobilis makes it as a promising bioethylene producer. In this study, Zymomonas mobilis has been engineered to produce ethylene through the introduction of the synthetic ethylene-forming enzyme (EFE). We also investigated the effect of systematically knocking out the competitive metabolic pathway of pyruvate in an effort to improve the availability of pyruvate for ethylene production in Z. mobilis expressing EFE. Guided by these results, we tested a number of conjectures that could improve the α-ketoglutarate supply. Optimization of these pathways and different substrate supplies resulted in a greater production of ethylene (from 1.36 to 12.83 nmol/OD600/mL), which may guide future engineering work on ethylene production using other organisms. Meanwhile, we achieved an ethylene production of 5.8 nmol/OD600/mL in the ZM532-efe strain using enzymatic straw hydrolysate of corn straw as the sole carbon source. As a preferred host in biorefinery technologies using lignocellulosic biomass as feedstock, heterologous expression of EFE in Z. mobilis converts the non-ethylene producing strain into an ethylene-producing one using a metabolic engineering approach, which is of great significance for the utilization of cellulosic biomass in the future.

Key points

Heterologous expression of EFE in Z. mobilis successfully converted the non-ethylene producing strain into an ethylene producer (1.36 nmol/OD600/mL). Targeted modifications of the central carbon metabolism can effectively improve ethylene production (peak production: 8.3 nmol/OD600/mL).

The addition of nutrients to the medium can further increase the production of ethylene (peak production: 12.8 nmol/OD600/mL).

The ZM532-efe strain achieved an ethylene production of 5.8 nmol/OD600/mL when enzymatic hydrolysate of corn straw was used as the sole carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The Z. mobilis 532 has been deposited at Guangdong Microbial Culture Center (GDMCC) under the Accession Number GDMCC60527.

References

  • Chen X, Liang Y, Hua J, Tao L, Qin W, Chen S (2010) Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene. Int J Biol Sci 6(1):96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Digiacomo F, Girelli G, Aor B, Marchioretti C, Pedrotti M, Perli T, Tonon E, Valentini V, Avi D, Ferrentino G, Dorigato A, Torre P, Jousson O, Mansy SS, Del Bianco C (2014) Ethylene-producing bacteria that ripen fruit. ACS Synth Biol 3(12):935–938

    CAS  PubMed  Google Scholar 

  • Duan G, Wu B, Qin H, Wang W, Tan Q, Dai Y, Qin Y, Tan F, Hu G, He M (2019) Replacing water and nutrients for ethanol production by ARTP derived biogas slurry tolerant Zymomonas mobilis strain. Biotechnol Biofuel 12:124

    Google Scholar 

  • Duque SH, Cardona CA, Moncada J (2015) Techno-economic and environmental analysis of ethanol production from 10 agroindustrial residues in Colombia. Energy Fuel 29(2):775–783

    CAS  Google Scholar 

  • Eckert C, Xu W, Xiong W, Lynch S, Ungerer J, Tao L, Gill R, Maness P-C, Yu J (2014) Ethylene-forming enzyme and bioethylene production. Biotechnol Biofuel 7(1):33

    Google Scholar 

  • Franden MA, Pienkos PT, Zhang M (2009) Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J Biotechnol 144(4):259–267

    CAS  PubMed  Google Scholar 

  • Franden MA, Pilath HM, Mohagheghi A, Pienkos PT, Zhang M (2013) Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates. Biotechnol Biofuel 6:99

    CAS  Google Scholar 

  • Fukuda H, Fujii T, Ogawa T (1986) Preparation of a cell-free ethylene-forming system from Penicillium digitatum. Agric Biol Chem 50(4):977–981

    CAS  Google Scholar 

  • Fukuda H, Ogawa T, Ishihara K, Fujii T, Nagahama K, Omata T, Inoue Y, Tanase S, Morino Y (1992a) Molecular cloning in Escherichia coli, expression, and nucleotide sequence of the gene for the ethylene-forming enzyme of Pseudomonas syringae pv. phaseolicola PK2. Biochem Biophys Res Commun 188(2):826–832

    CAS  PubMed  Google Scholar 

  • Fukuda H, Ogawa T, Tazaki M, Nagahama K, Fujiil T, Tanase S, Morino Y (1992b) Two reactions are simultaneously catalyzed by a single enzyme: the arginine-dependent simultaneous formation of two products, ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae. Biochem Biophys Res Commun 188(2):483–489

    CAS  PubMed  Google Scholar 

  • Guerrero F, Carbonell V, Cossu M, Correddu D, Jones PR (2012) Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. PloS One 7(11):e50470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Padilla MGD, Karim MN (2005) Influence of furfural on the recombinant Zymomonas mobilis strain CP4 (pZB5) for ethanol production. J Am Sci 1(1):24–27

    Google Scholar 

  • Hall M, Smith A (1995) Ethylene and the responses of plants to stress. Bulg J Plant Physiol 21(2-3):71–79

    CAS  Google Scholar 

  • Hausinger RP (2004) FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem 39(1):21–68

    CAS  Google Scholar 

  • He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH (2012) Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl Microbiol Biotechnol 95:189–199

    CAS  PubMed  Google Scholar 

  • He MX, Wu B, Qin H, Ruan ZY, Tan FR, Wang JL, Shui ZX, Dai LC, Zhu QL, Pan K, Tang XY, Wang WG, Hu QC (2014) Zymomonas mobilis: a novel platform for future biorefineries. Biotechnol Biofuel 7(1):101

    CAS  Google Scholar 

  • Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 1(6):497–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hui YS, Mohagheghi A, Franden MA, Chou Y, Chen X, Dowe N, Himmel ME, Zhang M (2016) Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnol Biofuel 9(1):189

    Google Scholar 

  • Ipatieff V, Corson B (1936) Gasoline from ethylene by catalytic polymerization. Ind Eng Chem 28(7):860–863

    CAS  Google Scholar 

  • Ishihara K, Matsuoka M, Inoue Y, Tanase S, Ogawa T, Fukuda H (1995) Overexpression and in vitro reconstitution of the ethylene-forming enzyme from Pseudomonas syringae. J Ferment Bioeng 79(3):205–211

    CAS  Google Scholar 

  • Ishihara K, Matsuoka M, Ogawa T, Fukuda H (1996) Ethylene production using a broad-host-range plasmid in Pseudomonas syringae and Pseudomonas putida. J Ferment Bioeng 82(5):509–511

    CAS  Google Scholar 

  • Jeong-Sun S, Chong HY, Jeong-Hyun K, Jae-Young K (2007) Method for mass production of primary metabolites, strains for mass production of primary metabolites, and method for preparation thereof. Patent US20090162910A1

  • Johansson N, Quehl P, Norbeck J, Larsson C (2013) Identification of factors for improved ethylene production via the ethylene forming enzyme in chemostat cultures of Saccharomyces cerevisiae. Microb Cell Fact 12(1):89

    PubMed  PubMed Central  Google Scholar 

  • Johansson N, Persson KO, Norbeck J, Larsson C (2017) Expression of NADH-oxidases enhances ethylene productivity in Saccharomyces cerevisiae expressing the bacterial EFE. Biotechnol Bioprocess Eng 22(2):195–199

    CAS  Google Scholar 

  • Lee KY, Park JM, Kim TY, Yun H, Lee SY (2010) The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb Cell Fact 9(1):94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh D, Scopes RK, Rogers PL (1984) A proposed pathway for sorbitol production by Zymomonas mobilis. Appl Microbiol Biotechnol 20(6):413–415. https://doi.org/10.1007/bf00261944

    Article  CAS  Google Scholar 

  • Lynch S, Eckert C, Yu J, Gill R, Maness P-C (2016) Overcoming substrate limitations for improved production of ethylene in E coli. Biotechnol Biofuel 9(1). https://doi.org/10.1186/s13068-015-0413-x

  • Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuel 2:26

    Google Scholar 

  • Nagahama K, Ogawa T, Fujii T, Tazaki M, Tanase S, Morino Y, Fukuda H (1991) Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. Microbiol 137(10):2281–2286

    CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74(1):17–24

    CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of abBillion ton annual supply. Oak Ridge National Laboratory, Oak Ridge ORNL/TM-2005/66

    Google Scholar 

  • Pirkov I, Albers E, Norbeck J, Larsson C (2008) Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae. Metab Eng 10(5):276–280

    CAS  PubMed  Google Scholar 

  • Ranatunga T, Jervis J, Helm R, McMillan J, Hatzis C (1997) Identification of inhibitory components toxic toward Zymomonas mobilis CP4(pZB5) xylose fermentation. Appl Biochem Biotechnol 67(3):185–198

    CAS  Google Scholar 

  • Ren T, Patel MK, Blok K (2008) Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs. Energ 33(5):817–833

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Shui ZXWJ, Qin H, Wu B, Tan FR, He MX (2015) Construction and preliminary fermentation of succinate-producing recombinant ethanologenic Zymomonas mobilis. Chin J Appl Environ Biol 21(4):657–664

    CAS  Google Scholar 

  • Takahama K, Matsuoka M, Nagahama K, Ogawa T (2003) Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. J Biosci Bioeng 95(3):302–305

    CAS  PubMed  Google Scholar 

  • Tan FR, Dai LC, Wu B, Qin H, Shui ZX, Wang JL, Zhu QL, Hu QC, Ruan ZY, He MX (2015) Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Appl Microbiol Biotechnol 99(12):5363–5371

    CAS  PubMed  Google Scholar 

  • Tao L, Dong H-J, Chen X, Chen S-F, Wang T-H (2008) Expression of ethylene-forming enzyme (EFE) of Pseudomonas syringae pv. glycinea in Trichoderma viride. Appl Microbiol Biotechnol 80(4):573

    CAS  PubMed  Google Scholar 

  • Ungerer J, Tao L, Davis M, Ghirardi M, Maness P-C, Yu J (2012) Sustained photosynthetic conversion of CO 2 to ethylene in recombinant Cyanobacterium Synechocystis 6803. Energy Environ Sci 5(10):8998–9006

    CAS  Google Scholar 

  • Völksch B, Weingart H (1997) Comparison of ethylene-producing Pseudomonas syringae strains isolated from kudzu (Pueraria lobata) with Pseudomonas syringae pv. phaseolicola and Pseudomonas syringae pv. glycinea. Eur J Plant Pathol 103(9):795–802

    Google Scholar 

  • Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, Contreras LM, Yang S (2018) Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng 50:57–73

    CAS  PubMed  Google Scholar 

  • Wang W, Wu B, Qin H, Liu P, Qin Y, Duan G, Hu G, He M (2019) Genome shuffling enhances stress tolerance of Zymomonas mobilis to two inhibitors. Biotechnol Biofuel 12(1):288

    CAS  Google Scholar 

  • Weingart H, Völksch B, Ullrich M (1999) Comparison of ethylene production by Pseudomonas syringae and Ralstonia solanacearum. Phytopathol 89(5):360–365

    CAS  Google Scholar 

  • Widiastuti H, Lee NR, Karimi IA, Lee DY (2018) Genome-scale in silico analysis for enhanced production of succinic acid in Zymomonas mobilis. Processes 6(4):30

    Google Scholar 

  • Wiechert W, Möllney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3(3):265–283

    CAS  PubMed  Google Scholar 

  • Wu BHM, Feng H, Zhang Y, Hu QC, Zhang YZ (2013) Construction and characterization of restriction- modification deficient mutants in Zymomonas mobilis ZM4. Chin J Appl Environ Biol 19(002):189–197

    CAS  Google Scholar 

  • Wu B, Qin H, Yang Y, Duan G, Yang S, Xin F, Zhao C, Shao H, Wang Y, Zhu Q (2019) Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis. Biotechnol Biofuel 12(1):10

    Google Scholar 

  • Yang SH, Franden MA, Brown SD, Chou YC, Pienkos PT, Zhang M (2014) Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates. Biotechnol Biofuel 7(140):30

    Google Scholar 

  • Zhang Y, Chen K, Zhang S, Ferguson I (2003) The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biol Technol 28(1):67–74

    Google Scholar 

  • Zhao X (2011) Genetic characterization and manipulation of strains of Zymomonas mobilis for ethanol and higher value products. University of New South Wales, Sydney

    Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Sciences Foundation of China (Grant No. 32070036), the Elite Program and Basic Research Program of Chinese Academy of Agricultural Sciences, and Central Public-interest Scientific Institution Basal Research Fund (No. Y2019XK23-01) to Mingxiong He.

Author information

Authors and Affiliations

Authors

Contributions

MXH designed the whole study and edited the entire draft manuscript. YH participated in all experiments and data collection. BW participated in data analysis. WX, KYZ, QY, TQ, QHY, and PTL participated in plasmid construction, RT-PCR and HPLC analysis. GQH participated in helpful discussions regarding the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ming-Xiong He.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wu, B., Xia, W. et al. Metabolic engineering of Zymomonas moblis for ethylene production from straw hydrolysate. Appl Microbiol Biotechnol 105, 1709–1720 (2021). https://doi.org/10.1007/s00253-021-11091-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11091-7

Keyword

Navigation