Skip to main content
Log in

Deciphering Electron-Shuttling Characteristics of Neurotransmitters to Stimulate Bioelectricity-Generating Capabilities in Microbial Fuel Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Author Correction to this article was published on 03 December 2020

This article has been updated

Abstract

This first-attempt study used electrochemical methods to quantitatively assess electron-shuttling capabilities of different neurotransmitters crucial to catecholamine biosynthesis in human brain. As prior studies mentioned, aromatics bearing ortho- or para-dihydroxybenzenes could reveal promising electroactivities to stimulate bioenergy generation in microbial fuel cells (MFCs). This feasibility study extended to investigate the electrochemical characteristics of catecholamines and trace amines (e.g., 14 model compounds selected from neurotransmitters) synthesized by human brain via cyclic voltammetry methods (CVs) and MFCs. Dopamine (DA), levodopa (L-DOPA), epinephrine (EP), norepinephrine (NP), and 3,4-dihydroxyphenylacetic acid (DOPAC) would perform the electron-shuttling characteristics, and the rest would not. In particular, DA formed by decarboxylation of L-DOPA could exhibit relatively higher electrochemical activities than their precursors. In addition, carboxylic acids formed by deamination and carboxylation of trace monoamines would reveal more significant reductive potential (Epc); however, their oxidative electric currents seemed to be reduced. That is, chemical structure significantly influenced whether the electrochemical characteristics could be effectively expressed. This work also clearly revealed that neurotransmitters with ortho-dihydroxybenzenes exhibited promising stimulation to bioelectricity-generating capabilities of MFCs in the ranking of DA ~ EP > NP > L-DOPA > DOPAC. This was consistent with ES behaviors as CV analyses indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 03 December 2020

    An Author Correction to this paper has been published: <ExternalRef><RefSource>https://doi.org/10.1007/s12010-020-03474-9</RefSource><RefTarget Address="10.1007/s12010-020-03474-9" TargetType="DOI"/></ExternalRef>

Abbreviations

CV:

Cyclic voltammetry

DA:

Dopamine

DOPAC:

3,5-Dihydroxyphenylacetic acid

DBH:

Dopamine β-hydroxylase

EGCG:

Epigallocatechin gallate

ECG:

Epicatechin-3-gallate

EP:

Epinephrine

ESs:

Electron shuttles

FAD:

Flavin adenine dinucleotide

FADH2 :

Flavin adenine dinucleotide (hydroquinone form)

HVA:

Homovanillic acid, 4-hydroxy-3-methoxyphenylacetic acid

MFCs:

Microbial fuel cells

NP:

Norepinephrine

L-DOPA:

l-3,4-Dihydroxyphenylalanine; levodopa

L-Phe:

l-Phenylalanine

L-Tyr:

l-Tyrosine

PEA:

Phenethylamine

NAD+:

Nicotinamide adenine dinucleotide (oxidized form)

NADH:

Nicotinamide adenine dinucleotide (reduced form)

PNMT:

Phenylethanolamine N-methyltransferase

TAs:

Trace amines

References

  1. Slate, A. J., Whitehead, K. A., Brownson, D. A. C., & Banks, C. E. (2019). Microbial fuel cells: an overview of current technology. Renewable and Sustainable Energy Reviews, 101, 60–81.

    Article  CAS  Google Scholar 

  2. Winaikij, P., Sreearunothai, P., & Sombatmankhong, K. (2018). Probing mechanisms for microbial extracellular electron transfer (EET) using electrochemical and microscopic characterizations. Solid State Ionics, 320, 283–291.

    Article  CAS  Google Scholar 

  3. Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482.

    Article  CAS  Google Scholar 

  4. Chen, B. Y., Hsueh, C. C., Liu, S. Q., Hung, J. Y., Qiao, Y., Yueh, F. L., & Wang, T. M. (2013). Unveiling characteristics of dye-bearing microbial fuel cells for energy and materials recycling: redox mediators. International Journal of Hydrogen Energy, 38, 15598–15605.

    Article  CAS  Google Scholar 

  5. Xu, B., Chen, B. Y., Hsueh, C. C., Qin, L. J., & Chang, C. T. (2014). Deciphering characteristics of bicyclic aromatics—mediators for reductive decolorization and bioelectricity generation. Bioresource Technology, 163, 280–286.

    Article  CAS  Google Scholar 

  6. Oon, Y. S., Ong, S. A., Ho, L. S., Oon, Y. L., Lehl, H. K., Thung, W. E., & Nordin, N. (2018). Disclosing the synergistic mechanisms of azo dye degradation and bioelectricity generation in a microbial fuel cell. Chemical Engineering Journal, 344, 236–245.

    Article  CAS  Google Scholar 

  7. Chen, B. Y., Liao, J. H., Hsu, A. W., Tsai, P. W., & Hsueh, C. C. (2018). Exploring optimal supplement strategy of medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells. Bioresource Technology, 256, 95–101.

    Article  CAS  Google Scholar 

  8. Guo, L. L., Qin, L. J., Xu, B., Wang, X. Z., Hsueh, C. C., & Chen, B. Y. (2019). Deciphering electron-shuttling characteristics of epinephrine and dopamine for bioenergy extraction using microbial fuel cells. Biochemical Engineering Journal, 148, 57–64.

    Article  CAS  Google Scholar 

  9. Broadley, K. J. (2010). The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Pharmacology & Therapeutics, 125, 363–375.

    Article  CAS  Google Scholar 

  10. Lindemann, L., & Hoener, M. C. (2005). A renaissance in trace amines inspired by a novel GPCR family. Trends in Pharmacological Sciences, 26, 274–281.

    Article  CAS  Google Scholar 

  11. Eisenhofer, G., & Reichmann, H. (2012). In D. Robertson, I. Biaggioni, G. Burnstock, P. A. Low, & J. F. R. Paton (Eds.), Primer on the autonomic nervous system (3th ed., pp. 63–65). Cambridge: Academic Press.

    Chapter  Google Scholar 

  12. Liu, C. L., & Kaeser, P. S. (2019). Mechanisms and regulation of dopamine release. Current Opinion in Neurobiology, 57, 46–53.

    Article  CAS  Google Scholar 

  13. Kaeser, P. S., & Regehr, W. G. (2014). Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annual Review of Physiology, 76, 333–363.

    Article  CAS  Google Scholar 

  14. Berry, M. D. (2004). Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. Journal of Neurochemistry, 90(2), 257–271.

    Article  CAS  Google Scholar 

  15. Waller, D. G., & Sampson, A. P. (2018). Medical pharmacology and therapeutics (5th ed.). BV: Elsevier.

    Google Scholar 

  16. Donadio, V., Liguori, R., Incensi, A., Chiaro, G., Bartoletti-Stella, A., Capellari, S., & Cortelli, P. (2016). Skin biopsy and microneurography disclose selective noradrenergic dysfunction due to dopamine-β-hydroxylase deficiency. Autonomic Neuroscience, 197, 56–59.

    Article  CAS  Google Scholar 

  17. Cooper, J. R. (2001). In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of the social & behavioral sciences (pp. 10612–10619). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  18. Paravati, S., & Warrington, S. J. (2019). Physiology, catecholamines. FL: StatPearls.

    Google Scholar 

  19. Dhalla, N. S., Ganguly, P. K., Bhullar, S. K., & Tappia, P. S. (2019). Role of catecholamines in the pathogenesis of diabetic cardiomyopathy. Canadian Journal of Physiology and Pharmacology, 97(9), 815–819.

    Article  CAS  Google Scholar 

  20. Badillo-Ramírez, I., Saniger, J. M., & Rivas-Arancibia, S. (2019). 5-S-Cysteinyl-dopamine, a neurotoxic endogenous metabolite of dopamine: implications for Parkinson’s disease. Neurochemistry International, 129, 104514.

    Article  Google Scholar 

  21. Segura-Aguilar, J., & Huenchuguala, S. (2018). Aminochrome induces irreversible mitochondrial dysfunction by inducing autophagy dysfunction in Parkinson’s disease. Frontiers in Neuroscience, 12, 1–5.

    Article  Google Scholar 

  22. Ferapontova, E. E. (2017). Electrochemical analysis of dopamine: perspectives of specific in vivo detection. Electrochimica Acta, 245, 664–671.

    Article  CAS  Google Scholar 

  23. Muhammad, Z. H., & Waqas, N. (2016). The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system. Biomedicine & Pharmacotherapy, 83, 439–449.

    Article  Google Scholar 

  24. Pae, C. U., Yu, H. S., Amann, D., Kim, J. J., Lee, C. U., Lee, S. J., Jun, T. Y., Lee, C., Paik, I. H., Patkar, A. A., & Lerer, B. (2008). Association of the trace amine associated receptor 6 (TAAR6) gene with schizophrenia and bipolar disorder in a Korean case control sample. Journal of Psychiatric Research, 42(1), 35–40.

    Article  Google Scholar 

  25. Burchett, S. A., & Hicks, T. P. (2006). The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Progress in Neurobiology, 79, 223–246.

    Article  CAS  Google Scholar 

  26. Sherwani, S. I., and Khan, H. A. (2016), Trace amines and neurological disorders. (Farooqui, T. and Farooqui, A. A., ed.), Academic, 269-284.

  27. Chen, B. Y., Liao, J. H., Hsueh, C. C., Qu, Z., Hsu, A. W., Chang, C. T., & Zhang, S. (2018). Deciphering biostimulation strategy of using medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells. Energy., 161, 1042–1054.

    Article  CAS  Google Scholar 

  28. Mohan, S. V., Saravanan, R., Raghavulu, S. V., Mohanakrishna, G., & Sarma, P. N. (2008). Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresource Technology, 99, 596–603.

    Article  Google Scholar 

  29. Zare, H. R., Namazian, M., & Coote, M. L. (2009). Experimental and theoretical studies of electrochemical characteristics of 3,4-dihydroxyphenylacetic acid (DOPAC). Electrochimica Acta, 54, 5353–5357.

    Article  CAS  Google Scholar 

  30. Watanabe, K., Manefield, M., Lee, M., & Kouzuma, A. (2009). Electron shuttles in biotechnology. Current Opinion in Biotechnology, 20(6), 633–641.

    Article  CAS  Google Scholar 

  31. Oliveira-Brett, A. M., Diculescu, V. C., Enache, T. A., Fernandes, I. P. G., Paquim, A. C., & Oliveira, S. C. B. (2019). Bioelectrochemistry for sensing amino acids, peptides, proteins and DNA interactions. Current Opinion in Electrochemistry, 14, 173–179.

    Article  CAS  Google Scholar 

  32. Vatrál, J., Boča, R., & Linert, W. (2014). Electrochemical investigation of the redox couple Fe(III)/Fe(II) in the presence of amino acids and neurotransmitters. Electrochimica Acta, 145, 53–63.

    Article  Google Scholar 

  33. Palakollu, V. N., Thapliyal, N., Chiwunze, T. E., Karpoormath, R., Karunanidhi, S., & Cherukupalli, S. (2017). Electrochemically reduced graphene oxide/poly-glycine composite modified electrode for sensitive determination of L-dopa. Materials Science and Engineering: C, 77, 394–404.

    Article  CAS  Google Scholar 

  34. Costa, D. J. E., Martínez, A. M., Ribeiro, W. F., Bichinho, K. M., Nezio, M. S. D., Pistonesi, M. F., & Araujo, M. C. U. (2016). Determination of tryptamine in foods using square wave adsorptive stripping voltammetry. Talanta, 154, 134–140.

    Article  CAS  Google Scholar 

  35. Silva, W. D., Ghica, M. E., Ajayi, R. F., Iwuoha, E. I., & Brett, C. M. A. (2019). Impedimetric sensor for tyramine based on gold nanoparticle doped-poly(8-anilino-1-naphthalene sulphonic acid) modified gold electrodes. Talanta, 195, 604–612.

    Article  Google Scholar 

  36. Chen, B. Y., Hsu, A. W., Wu, C. C., & Hsueh, C. C. (2017). Feasibility study on biostimulation of dye decolorization and bioelectricity generation by using decolorized metabolites of edible flora-extracts. Journal of the Taiwan Institute of Chemical Engineers, 79, 141–150.

    Article  CAS  Google Scholar 

  37. Chen, B. Y., Hsueh, C. C., Liu, S. Q., Ng, I. S., & Wang, Y. M. (2013). Deciphering mediating characteristics of decolorized intermediates for reductive decolorization and bioelectricity generation. Bioresource Technology, 145, 321–325.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was completed as part of cooperative achievements for Academic Exchange Program between Southeast University (China) and National I-Lan University (Taiwan). This work is also dedicated to the memory of Dr. Dolloff F. Bishop and Dr. Henry Tabak, as most of novel concepts were initiated while corresponding author—Bor-Yann Chen—worked in the National Risk Management Research Laboratory (NRMRL), US Environmental Protection Agency (EPA), Cincinnati, OH, USA, under their mentorships.

Funding

The authors sincerely appreciate financial supports (MOST 106-2221-E-197-020-MY3, 106-2923-E-197-002-MY3, 106-2621-M-197-001, 105-2622-E-197-012-CC3) from the Taiwan’s Ministry of Science and Technology for the project of Microbial Fuel Cells (MFCs)sdg conducted in Biochemical Engineering Laboratory, C&ME NIU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bor-Yann Chen or Chung-Chuan Hsueh.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors consented to the publication of this work. Authors all confirm the permision of publication for this study.

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

Research Involving Human Participants and/or Animals

The authors declare that this research does not involve human participants and animals.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article unfortunately contained a mistake. There are some incorrect data in the ESM file.

Electronic Supplementary Material

ESM 1

(DOCX 1.18 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, BY., Lin, YH., Wu, YC. et al. Deciphering Electron-Shuttling Characteristics of Neurotransmitters to Stimulate Bioelectricity-Generating Capabilities in Microbial Fuel Cells. Appl Biochem Biotechnol 191, 59–73 (2020). https://doi.org/10.1007/s12010-020-03242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03242-9

Keywords

Navigation