Skip to main content
Log in

Polyvinyl Alcohol/Hydroxyethylcellulose Containing Ethosomes as a Scaffold for Transdermal Drug Delivery Applications

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aims to develop scaffold for transdermal drug delivery method (TDDM) using electrospinning technique from polyvinyl alcohol (PVA) and hydroxyethylcellulose (HEC). The fluorescein isothiocyanate (FITC) loaded on ethosomes (FITC@Eth) was used as a drug model. The prepared PVA/HEC/FITC@Eth scaffold was characterized via scanning electron microscope (SEM) that show morphology change by adding FITC@Eth. Also, Fourier transform infrared spectroscopy (FTIR), mechanical properties, X-ray diffraction (XRD), thermal gravimetric (TGA) analysis show that the addition of FITC@Eth to PVA/HEC does not change the scaffold properties. Franz diffusion cells were used for in vitro skin permeation experiments using rat dorsal skins. The FITC@Eth penetration was better than that of free FITC due to the presence of ethosome which enhance the potential skin targeting. In conclusion, the prepared PVA/HEC/FITC@Eth scaffold can serve as a promising transdermal scaffold for sustained FITC release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Asmatulu, R., & Khan, W. S. (2019). In R. Asmatulu & W. S. Khan (Eds.), In Synthesis and applications of electrospun nanofibers (pp. 17–39). Elsevier.

  2. El Fawa, G.F. (2019). Polymer nanofibers electrospinning: A review. Egyptian Journal of Chemistry, in press; https://doi.org/10.21608/ejchem.2019.14837.1898.

  3. Mendes, A. C., Gorzelanny, C., Halter, N., Schneider, S. W., & Chronakis, I. S. (2016). Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. International Journal of Pharmaceutics, 510, 48–56.

    CAS  PubMed  Google Scholar 

  4. Kataria, K., Gupta, A., Rath, G., Mathur, R. B., & Dhakate, S. R. (2014). In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. International Journal of Pharmaceutics, 469, 102–110.

    CAS  PubMed  Google Scholar 

  5. Barry, B. W. (1987). Mode of action of penetration enhancers in human skin. Journal of Controlled Release, 6, 85–97.

    CAS  Google Scholar 

  6. Marwah, H., Garg, T., Goyal, A. K., & Rath, G. (2016). Permeation enhancer strategies in transdermal drug delivery. Drug Delivery, 23, 564–578.

    CAS  PubMed  Google Scholar 

  7. Verma, P., & Pathak, K. (2010). Therapeutic and cosmeceutical potential of ethosomes: An overview. Journal of Advanced Pharmaceutical Technology and Research, 1, 274–282.

    CAS  PubMed  Google Scholar 

  8. Cevc, G., & Blume, G. (1992). Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1104, 226–232.

    CAS  Google Scholar 

  9. Xie, J., Ji, Y., Xue, W., Ma, D., & Hu, Y. (2018). Hyaluronic acid-containing ethosomes as a potential carrier for transdermal drug delivery. Colloids and Surfaces B: Biointerfaces, 172, 323–329.

    CAS  PubMed  Google Scholar 

  10. Indulekha, S., Arunkumar, P., Bahadur, D., & Srivastava, R. (2016). Thermoresponsive polymeric gel as an on-demand transdermal drug delivery system for pain management. Materials Science and Engineering: C, 62, 113–122.

    CAS  Google Scholar 

  11. Zhou, X., Hao, Y., Yuan, L., Pradhan, S., Shrestha, K., Pradhan, O., Liu, H., & Li, W. (2018). Nano-formulations for transdermal drug delivery: A review. Chinese Chemical Letters, 29, 1713–1724.

    CAS  Google Scholar 

  12. Mbah, C. C., Builders, P. F., & Attama, A. A. (2014). Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus. Expert Opinion on Drug Delivery, 11, 45–59.

    CAS  PubMed  Google Scholar 

  13. Fang, J.-Y., Hwang, T.-L., Huang, Y.-L., & Fang, C.-L. (2006). Enhancement of the transdermal delivery of catechins by liposomes incorporating anionic surfactants and ethanol. International Journal of Pharmaceutics, 310, 131–138.

    CAS  PubMed  Google Scholar 

  14. Zhu, X., Li, F., Peng, X., & Zeng, K. (2013). Formulation and evaluation of lidocaine base ethosomes for transdermal delivery. Anesthesia and Analgesia, 117, 352–357.

    CAS  PubMed  Google Scholar 

  15. Bendas, E. R., & Tadros, M. I. (2007). Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech, 8, E107–E107.

    PubMed  Google Scholar 

  16. Shelke, S., Shahi, S., Jalalpure, S., & Dhamecha, D. (2016). Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation and permeation studies. Journal of Liposome Research, 26, 1–11.

    Google Scholar 

  17. Iizhar, S. A., Syed, I. A., Satar, R., & Ansari, S. A. (2016). In vitro assessment of pharmaceutical potential of ethosomes entrapped with terbinafine hydrochloride. Journal of Advance Research, 7, 453–461.

    CAS  Google Scholar 

  18. Cui, Z., Zheng, Z., Lin, L., Si, J., Wang, Q., Peng, X., & Chen, W. (2018). Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Advances in Polymer Technology, 37, 1917–1928.

    CAS  Google Scholar 

  19. Gao, T., Jiang, M., Liu, X., You, G., Wang, W., Sun, Z., Ma, A., & Chen, J. (2019). Patterned polyvinyl alcohol hydrogel dressings with stem cells seeded for wound healing. Polymers, 11, 171.

    PubMed Central  Google Scholar 

  20. Zhang, R., Zhang, X., Tang, Y., & Mao, J. (2020). Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydrate Polymers, 228, 115381.

    CAS  PubMed  Google Scholar 

  21. Vandghanooni, S., & Eskandani, M. (2019). Electrically conductive biomaterials based on natural polysaccharides: Challenges and applications in tissue engineering. International Journal of Biological Macromolecules, 141, 636–662.

    CAS  PubMed  Google Scholar 

  22. El-Fawal, G. (2014). Preparation, characterization and antibacterial activity of biodegradable films prepared from carrageenan. Journal of Food Science and Technology, 51, 2234–2239.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sessarego, S., Rodrigues, S. C. G., Xiao, Y., Lu, Q., & Hill, J. M. (2019). Phosphonium-enhanced chitosan for Cr(VI) adsorption in wastewater treatment. Carbohydrate Polymers, 211, 249–256.

    CAS  PubMed  Google Scholar 

  24. El-Haddad, M. N. (2014). Hydroxyethylcellulose used as an eco-friendly inhibitor for 1018 c-steel corrosion in 3.5% NaCl solution. Carbohydrate Polymers, 112, 595–602.

    CAS  PubMed  Google Scholar 

  25. El Fawal, G. F., Abu-Serie, M. M., Hassan, M. A., & Elnouby, M. S. (2018). Hydroxyethyl cellulose hydrogel for wound dressing: Fabrication, characterization and in vitro evaluation. International Journal of Biological Macromolecules, 111, 649–659.

    PubMed  Google Scholar 

  26. El Fawal, G., Hong, H., song, X., Wu, J., Sun, M., He, C., Mo, X., Jiang, Y., & Wang, H. (2020). Fabrication of antimicrobial films based on hydroxyethylcellulose and ZnO for food packaging application. Food Packaging and Shelf Life, 23, 100462.

    Google Scholar 

  27. Shew, R. L., & Deamer, D. W. (1985). A novel method for encapsulation of macromolecules in liposomes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 816, 1–8.

    CAS  Google Scholar 

  28. Zhang, L., Wang, J., Chi, H., & Wang, S. (2016). Local anesthetic lidocaine delivery system: chitosan and hyaluronic acid-modified layer-by-layer lipid nanoparticles. Drug Delivery, 23, 3529–3537.

    CAS  PubMed  Google Scholar 

  29. Nezarati, R. M., Eifert, M. B., & Cosgriff-Hernandez, E. (2013). Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Engineering Methods (Part C), 19, 810–819.

    CAS  Google Scholar 

  30. Athira, K. S., Sanpui, P., & Kaushik, C. (2014). Fabrication of poly(Caprolactone) nanofibers by electrospinning. Journal of Polymer Science Part B: Polymer Physics, 2, 62–66.

    CAS  Google Scholar 

  31. Chahal, S., Hussain, F. S. J., Kumar, A., Rasad, M. S. B. A., & Yusoff, M. M. (2016). Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Chemical Engineering Science, 144, 17–29.

    CAS  Google Scholar 

  32. Krupa, A., Jaworek, A., Sobczyk, A.T., Lackowski, M., Czech, T., Ramakrishna, S., Sundarrajan, S.,& Pliszka D. (2008).Electrosprayed nanoparticles for nanofiber coating. ILASS 2008 Sep. 8-10, Como Lake, Italy (Paper ID ILASS08-P-13).

  33. Touitou, E., Dayan, N., Bergelson, L., Godin, B., & Eliaz, M. (2000). Ethosomes-novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. Journal of Control Release, 65, 403–418.

    CAS  Google Scholar 

  34. Kostakova, E., Zemanová, E., Mikeš, P., Soukupova, J., Matheisová, H., & Klouda, K. (2012). Electrospinning and electrospraying of polymer solutions with spherical fullerenes. In NANOCON 2012 - Conference Proceedings, 4th International Conference (pp. 435–439).

    Google Scholar 

  35. Zulkifli, F. H., Hussain, F. S. J., Harun, W. S. W., & Yusoff, M. M. (2019). Highly porous of hydroxyethyl cellulose biocomposite scaffolds for tissue engineering. International Journal of Biological Macromolecules, 122, 562–571.

    CAS  PubMed  Google Scholar 

  36. Andrade, G., Barbosa-Stancioli, E. F., Mansur, A. A. P., Vasconcelos, W. L., & Mansur, H. S. (2006). Design of novel hybrid organic-inorganic nanostructured biomaterials for immunoassay applications. Biomedical Materials., 1, 221.

    CAS  PubMed  Google Scholar 

  37. Coates, J., (2000). Interpretation of infrared spectral, encyclopedia of analytical chemistry. John Wiley & Sons, Ltd, Chichester, p. 10815.

  38. Kumar, A., Negi, Y. S., Bhardwaj, N. K., & Choudhary, V. (2012). Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydrate Polymers, 88, 1364–1372.

    CAS  Google Scholar 

  39. Li, J., Revol, J. F., & Marchessault, R. H. (1997). Effect of degree of deacetylation of chitin on the properties of chitin crystallites. Journal of Applied Polymer Science, 65, 373.

    CAS  Google Scholar 

  40. Qua, E. H., Hornsby, P. R., Sharma, H. S. S., Lyons, G., & McCall, R. D. (2009). Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. Journal of Applied Polymer Science, 113, 2238–2247.

    CAS  Google Scholar 

  41. Jiang, L., Li, X., Liu, L., & Zhang, Q. (2013). Cellular uptake mechanism and intracellular fate of hydrophobically modified pullulan nanoparticles. International Journal of Nanomedicine, 8, 1825–1834.

    PubMed  PubMed Central  Google Scholar 

  42. Kampmann, A.-L., Grabe, T., Jaworski, C., & Weberskirch, R. (2016). Synthesis of well-defined core–shell nanoparticles based on bifunctional poly(2-oxazoline) macromonomer surfactants and a microemulsion polymerization process. RSC Advances, 6, 99752–99763.

    CAS  Google Scholar 

  43. Dhiman, A., & Singh, D. (2013). Development, characterization & in vitro skin permeation of rutin ethosomes as a novel vesicular carrier. International Journal of Biomedical Research, 4, 559.

    CAS  Google Scholar 

  44. Asran, A. S., Henning, S., & Michler, G. H. (2010). Polyvinyl alcohol–collagen–hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level. Polymer, 51, 868–876.

    CAS  Google Scholar 

  45. Russo, R., Abbate, M., Malinconico, M., & Santagata, G. (2010). Effect of polyglycerol and the crosslinking on the physical properties of a blend alginate-hydroxyethyl cellulose. Carbohydrate Polymers, 82, 1061–1067.

    CAS  Google Scholar 

  46. Guirguis, O. W., & Moselhey, M. T. H. (2012). Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Natural Science, 04(01), 11.

    Google Scholar 

  47. Holland, B. J., & Hay, J. N. (2001). The thermal degradation of poly(vinyl alcohol). Polymer, 42, 6775–6783.

    CAS  Google Scholar 

  48. Ali, I. O. (2013). Synthesis and characterization of Ag0/PVA nanoparticles via photo- and chemical reduction methods for antibacterial study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 922–929.

    CAS  Google Scholar 

  49. Attia, G., & Abd El-kader, M. (2013). Structural, optical and thermal characterization of PVA/2HEC polyblend films. International Journal of Electrochemical Science, 8, 5672–5687.

    CAS  Google Scholar 

  50. Chen, R., Yi, C., Wu, H., & Guo, S. (2010). Degradation kinetics and molecular structure development of hydroxyethyl cellulose under the solid state mechanochemical treatment. Carbohydrate Polymers, 81, 188–195.

    CAS  Google Scholar 

  51. Sakdiset, P., Amnuaikit, T., Pichayakorn, W., & Pinsuwan, S. (2019). Formulation development of ethosomes containing indomethacin for transdermal delivery. Journal of Drug Delivery Science and Technology, 52, 760–768.

    CAS  Google Scholar 

  52. Niu, X.-Q., Zhang, D.-P., Bian, Q., Feng, X.-F., Li, H., Rao, Y.-F., Shen, Y.-M., Geng, F.-N., Yuan, A.-R., Ying, X.-Y., & Gao, J.-Q. (2019). Mechanism investigation of ethosomes transdermal permeation. International Journal of Pharmaceutics: X, 1, 100027.

    Google Scholar 

Download references

Funding

This research was supported by Shanghai Science and Technology Committee Project (18490740400), the Fundamental Research Funds for the Central Universities (2232019D3-20), the Project of Shaoxing Medical Key Discipline Construction Plan (NO. 2019SZD06), Opening project of Zhejiang provincial preponderant and characteristic subject of key university (traditional Chinese pharmacology), Zhejiang Chinese Medical University (ZYAOX2018035) and Project of Health and Family Planning Commission of Zhejiang province (2018KY831).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Zhang or Hongsheng Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Fawal, G., Hong, H., Song, X. et al. Polyvinyl Alcohol/Hydroxyethylcellulose Containing Ethosomes as a Scaffold for Transdermal Drug Delivery Applications. Appl Biochem Biotechnol 191, 1624–1637 (2020). https://doi.org/10.1007/s12010-020-03282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03282-1

Keywords

Navigation