Skip to main content

Advertisement

Log in

An Effective Hybrid Strategy for Conversion of Biomass into Furfurylamine by Tandem Pretreatment and Biotransamination

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, an effective hybrid strategy was developed for tandem conversion of biomass to furfurylamine with tin-based solid acid Sn-Maifanitum stone and recombinant Escherichia coli whole cells harboring ω-transaminase. 90.3 mM furfural was obtained from corncob (75 g/L) at 170 °C for 0.5 h over Sn-Maifanitum stone catalyst (3.5 wt%) in the aqueous media (pH 1.0), which could be further bioconverted into furfurylamine at 74.0% yield (based on biomass-derived furfural) within 20.5 h. Finally, an efficient recycling and reuse of Sn-Maifanitum stone catalyst and immobilized Escherichia coli AT2018 whole-cell biocatalyst was developed for the synthesis of furfurylamine from biomass in the one-pot reaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen, X., Xue, Y., Hu, J., Tsang, Y. F., & Gao, M.-T. (2017). Release of polyphenols is the major factor influencing the bioconversion of rice straw to lactic acid. Applied Biochemistry and Biotechnology, 183, 685–698.

    CAS  PubMed  Google Scholar 

  2. Li, G., Li, N., Zheng, M., Li, S. S., Wang, A., Cong, Y., Wang, X., & Zhang, T. (2016). Industrially scalable and cost-effective synthesis of 1,3-cyclopentanediol with furfuryl alcohol from lignocellulose. Green Chemistry, 18, 3607–3613.

    CAS  Google Scholar 

  3. Li, J., Ding, D., Xu, L. J., Guo, Q. X., & Fu, Y. (2014). The breakdown of reticent biomass to soluble components and their conversion to levulinic acid as a fuel precursor. RSC Advances, 4, 14985–14992.

    CAS  Google Scholar 

  4. Xu, J., Sheng, Z., Wang, X., Liu, X., Xia, J., Xiong, P., & He, B. (2016). Enhancement in ionic liquid tolerance of cellulase immobilized on PEGylated graphene oxide nanosheets: application in saccharification of lignocellulose. Bioresource Technology, 200, 1060–1064.

    CAS  PubMed  Google Scholar 

  5. Nishimura, S., Mizuhori, K., & Ebitani, K. (2015). Reductive amination of furfural toward furfurylamine with aqueous ammonia under hydrogen over Ru-supported catalyst. Research on Chemical Intermediates, 42, 19–30.

    Google Scholar 

  6. Karinen, R., & Niemelä, K. V. M. (2011). Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem, 4, 1002–1016.

    CAS  PubMed  Google Scholar 

  7. Steinbach, D., Kruse, A., & Sauer, J. (2017). Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- a review. Biomass Conversion and Biorefinery, 7, 247–274.

    CAS  Google Scholar 

  8. Tong, X., Zhang, Z., Gao, Y., Zhang, Y., Yu, L., & Li, Y. (2019). Selective carbon-chain increasing of renewable furfural utilizing oxidative condensation reaction catalyzed by mono-dispersed palladium oxide. Molecular Catalysis, 477. https://doi.org/10.1016/j.mcat.2019.110545.

  9. Millán, G. G., Phir, J., Mäkelä, M., Maloney, T., Balu, A. M., Pineda, A., Llorca, J., & Sixta, H. (2019). Furfural production in a biphasic system using a carbonaceous solid acid catalyst. Applied Catalysis A: General, 585, 117180.

    Google Scholar 

  10. Wang, K. F., Liu, C. L., Sui, K. Y., Guo, C., & Liu, C. Z. (2018). Efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by magnetic laccase catalyst. ChemBioChem, 19, 654–659.

    CAS  PubMed  Google Scholar 

  11. Nguyen-Huy, C., Kim, J. S., Yoon, S., Yang, E., Kwak, J. H., Lee, M. S., & An, K. (2018). Supported Pd nanoparticle catalysts with high activities and selectivities in liquid-phase furfural hydrogenation. Fuel, 226, 607–617.

    CAS  Google Scholar 

  12. Ma, Y. F., Wang, H., Xu, G. Y., Liu, X. H., Zhang, Y., & Fu, Y. (2017). Selective conversion of furfural to cyclopentanol over cobalt catalysts in one step. Chinese Chemical Letters, 28, 1153–1158.

    CAS  Google Scholar 

  13. Gupta, N. K., Fukuoka, A., & Nakajima, K. (2017). Amorphous Nb2O5 as a selective and reusable catalyst for furfural production from xylose in biphasic water and toluene. ACS Catalysis, 7, 2430–2436.

    CAS  Google Scholar 

  14. Liu, L., Lou, H., & Chen, M. (2016). Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over Ni/CNTs and bimetallic Cu Ni/CNTs catalysts. International Journal of Hydrogen Energy, 41, 14721–14731.

    CAS  Google Scholar 

  15. Liu, H., Huang, Z., Zhao, F., Cui, F., Li, X., Xia, C., & Chen, J. (2016). Efficient hydrogenolysis of biomass-derived furfuryl alcohol to 1,2- and 1,5-pentanediols over nonprecious Cu-Mg3AlO4.5 bifunctional catalyst. Catalysis Science & Technology, 6, 668–671.

    CAS  Google Scholar 

  16. Liu, Y., Zhou, K., Shu, H., Liu, H., Lou, J., Guo, D., Wei, Z., & Li, X. (2017). Switchable synthesis of furfurylamine and tetrahydrofurfurylamine from furfuryl alcohol over RANEY® nickel. Catalysis Science & Technology, 7, 4129–4135.

    CAS  Google Scholar 

  17. Zhang, L., Tian, L., Sun, R., Liu, C., Kou, H., & Zuo, H. (2019). Transformation of corncob into furfural by a bifunctional solid acid catalyst. Bioresource Technology, 276, 60–64.

    CAS  PubMed  Google Scholar 

  18. Xue, X. X., Di, J. H., He, Y. C., Wang, B. Q., & Ma, C. L. (2018). Effective utilization of carbohydrate in corncob to synthesize furfuralcohol by chemical–enzymatic catalysis in toluene–water media. Applied Biochemistry and Biotechnology, 185, 42–54.

    CAS  PubMed  Google Scholar 

  19. Chen, F. F., Zheng, G. W., Liu, L., Li, H., Chen, Q., Li, F., Li, C., & Xu, J. H. (2018). Reshaping the active pocket of amine dehydrogenases for asymmetric synthesis of bulky aliphatic amines. ACS Catalysis, 8, 2622–2628.

    CAS  Google Scholar 

  20. Zhang, J. D., Zhao, J., Gao, L., Chang, H., Wei, W., & Xu, J. (2019). Enantioselective synthesis of enantiopure beta-amino alcohols via kinetic resolution and asymmetric reductive amination by a robust transaminase from Mycobacterium vanbaalenii. Journal of Biotechnology, 290, 24–32.

    CAS  PubMed  Google Scholar 

  21. Mullangi, D., Chakraborty, D., Pradeep, A., Koshti, V., Vinod, C. P., Panja, S., Nair, S., & Vaidhyanathan, R. (2018). Highly stable COF-supported Co/Co(OH)2 nanoparticles heterogeneous catalyst for reduction of nitrile/nitro compounds under mild conditions. Small, 14, e1801233.

    PubMed  Google Scholar 

  22. Liu, Z. Q., Wu, L., Zheng, L., Wang, W. Z., Zhang, X. J., Jin, L. Q., & Zheng, Y. G. (2018). Biosynthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by carbonyl reductase from Rhodosporidium toruloides in mono and biphasic media. Bioresource Technology, 249, 161–167.

    CAS  PubMed  Google Scholar 

  23. Zhang, Z. J., Cai, R. F., & Xu, J. H. (2018). Characterization of a new nitrilase from Hoeflea phototrophica DFL-43 for a two-step one-pot synthesis of (S)-beta-amino acids. Applied Microbiology and Biotechnology, 201, 6047–6056.

    Google Scholar 

  24. Gomm, A., & O'Reilly, E. (2018). Transaminases for chiral amine synthesis. Current Opinion in Chemical Biology, 43, 106–112.

    CAS  PubMed  Google Scholar 

  25. Zhang, P., Liao, X., Ma, C., Li, Q., Li, A., & He, Y. (2019). Chemoenzymatic conversion of corncob to furfurylamine via tandem catalysis with tin-based solid acid and transaminase biocatalyst. ACS Sustainable Chemistry & Engineering, 7(21), 17636–17642.

    CAS  Google Scholar 

  26. Höhne, M., Schätzle, S., Jochens, H., Robins, K., & Bornscheuer, U. T. (2010). Rational assignment of key motifs for function guides in silico enzyme identification. Nature Chemical Biology, 6, 807–813.

    PubMed  Google Scholar 

  27. He, Y., Xu, J., Su, J., & Zhou, L. (2010). Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Applied Biochemistry and Biotechnology, 160, 1428–1440.

    CAS  PubMed  Google Scholar 

  28. Mallin, H., Hohne, M., & Bornscheuer, U. T. (2014). Immobilization of (R)- and (S)-amine transaminases on chitosan support and their application for amine synthesis using isopropylamine as donor. Journal of Biotechnology, 191, 32–37.

    CAS  PubMed  Google Scholar 

  29. Shin, G., Mathew, S., & Yun, H. (2015). Kinetic resolution of amines by (R)-selective omega-transaminase from Mycobacterium vanbaalenii. Journal of Industrial and Engineering Chemistry, 23, 128–133.

    CAS  Google Scholar 

  30. Zhang, J. D., Yang, X. X., Jia, Q., Zhao, J. W., Gao, L. L., Gao, W. C., Chang, H. H., Wei, W. L., & Xu, J. H. (2019). Asymmetric ring opening of racemic epoxides for enantioselective synthesis of (S)-β-amino alcohols by a cofactor self-sufficient cascade biocatalysis system. Catalysis Science & Technology, 9, 70–74.

    CAS  Google Scholar 

  31. Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310–318.

    CAS  PubMed  Google Scholar 

  32. Norimasa Kashiwagi, N., Ogino, C., & Kondo, A. (2017). Production of chemicals and proteins using biomass-derived substrates from a Streptomyces host. Bioresource Technology, 245, 1655–1663.

    PubMed  Google Scholar 

  33. Sawatdeenarunat, C., Nam, H., Adhikari, S., Sung, S., & Kumar Khanal, S. (2018). Decentralized biorefinery for lignocellulosic biomass: integrating anaerobic digestion with thermochemical conversion. Bioresource Technology, 250, 140–147.

    CAS  PubMed  Google Scholar 

  34. Audemar, M., Ciotonea, C., De Oliveira Vigier, K., Royer, S., Ungureanu, A., Dragoi, B., Dumitriu, E., & Jérôme, F. (2015). Selective hydrogenation of furfural to furfuryl alcohol in the presence of a recyclable cobalt/SBA-15 catalyst. ChemSusChem, 8, 1885–1891.

    CAS  PubMed  Google Scholar 

  35. Casoni, A. I., Hoch, P. M., Volpe, M. A., & Gutierrez, V. S. (2018). Catalytic conversion of furfural from pyrolysis of sunflower seed hulls for producing bio-based furfuryl alcohol. Journal of Cleaner Production, 178, 237–246.

    CAS  Google Scholar 

  36. Sweygers, N., Harrer, J., Dewil, R., & Appels, L. (2018). A microwave-assisted process for the in-situ production of 5-hydroxymethylfurfural and furfural from lignocellulosic polysaccharides in a biphasic reaction system. Journal of Cleaner Production, 187, 1014–1024.

    CAS  Google Scholar 

  37. Wang, A., Balsara, N. P., & Bell, A. T. (2016). Pervaporation-assisted catalytic conversion of xylose to furfural. Green Chemistry, 18, 4073–4085.

    CAS  Google Scholar 

  38. Jing, X., Zhang, X., & Bao, J. (2009). Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis. Applied Biochemistry and Biotechnology, 159, 696–707.

    CAS  PubMed  Google Scholar 

  39. Yang, Y. L., Ma, J. P., Jia, X. Q., Du, Z. T., Duan, Y., & Xu, J. (2016). Aqueous phase hydrogenation of furfural to tetrahydrofurfuryl alcohol on alkaline earth metal modified Ni/Al2O3. RSC Advances, 6, 51221–51228.

    CAS  Google Scholar 

  40. Jimenez-Gomez, C. P., Cecilia, J. A., Duran-Martin, D., Moreno-Tost, R., Santamaria-Gonzalez, J., Merida-Robles, J., Mariscal, R., & Maireles-Torres, P. (2016). Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts. Journal of Catalysis, 336, 107–115.

    CAS  Google Scholar 

  41. Shen, G., Zhang, S., Lei, Y., Chen, Z., & Yin, G. (2018). Synthesis of 2,5-furandicarboxylic acid by catalytic carbonylation of renewable furfural derived 5-bromofuroic acid. Molecular Catalysis, 455, 204–209.

    CAS  Google Scholar 

  42. Michèle, B., Pierre, G., & Catherine, P. (2013). Conversion of biomass into chemicals over metal catalysts. Chem. Res., 114, 1827–1870.

    Google Scholar 

  43. Xia, Z. H., Zong, M. H., & Li, N. (2020). Catalytic synthesis of 2,5-bis(hydroxymethyl)furan from 5-hydroxymethylfurfual by recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology, 134, 109491.

    CAS  PubMed  Google Scholar 

  44. Richter, N., Farnberger, J. E., Pressnitz, D., Lechner, H., Zepeck, F., & Kroutil, W. (2015). A system for ω-transaminase mediated (R)-amination using l-alanine as an amine donor. Green Chemistry, 17, 2952–2958.

    CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Key Research and Development Program of China (No. 2019YFA09005000), the National Natural Science Foundation of China (No. 21978072), the Hubei Provincial Natural Science Foundation of China (2018CFA019), the Science and Technology Innovation Program of Hubei Province (2018ABA098, 2018ABA096), the Central Committee Guides Local Science and Technology Development Projects (2018ZYYD034), the Open Project of State Key Laboratory of Biocatalysis and Enzyme Engineering (China) (No. SKLBEE2018008), and the Open Project of Jiangsu Key Laboratory for Biomassbased Energy and Enzyme Technology (No. BEETKB1902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Cai He.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, XL., Li, Q., Yang, D. et al. An Effective Hybrid Strategy for Conversion of Biomass into Furfurylamine by Tandem Pretreatment and Biotransamination. Appl Biochem Biotechnol 192, 794–811 (2020). https://doi.org/10.1007/s12010-020-03334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03334-6

Keywords

Navigation