Skip to main content
Log in

Effects and Mechanisms of Alkali Recycling and Ozone Recycling on Enzymatic Conversion in Alkali Combined with Ozone Pretreatment of Corn Stover

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to minimize waste liquor, save resources, and reduce costs, the effects of alkali recycling and ozone recycling on enzymatic conversion in alkali combined with ozone pretreatment of corn stover and the mechanism were studied. The results showed that as the number of cycles of alkali/ozone filtrate increased, the enzymatic conversion and the loss of reducing sugars showed a downward trend. It was indicated that the ability of alkali to damage lignocellulosic decreased with an increasing number of alkali circulation and the accumulation of lignin degradation products generated during ozonolysis inhibited enzymatic conversion. When the ozone filtrate was recovered and used for hydrolysis directly, the enzymatic conversion rates were basically the same compared with the first self-circulation of ozone filtrate, and no sewage was discharged. In conclusion, the optimal circulating pretreatment was four times alkali circulation and ozone filtrate was used as an enzymolysis liquid directly, and the conversion rates of cellulose and hemicellulose were 85.96% and 34.26%, respectively, saving 44% alkali consumption at the same time. This paper provided the theoretical basis for the development of lignocellulose pretreatment technology with low cost, high efficiency, and high conversion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou, C. H., Xia, X., Lin, C. X., Tong, D. S., & Beltramini, J. (2011). Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chemical Society Reviews, 40(11), 5588–5617.

    Article  CAS  PubMed  Google Scholar 

  2. Moens, L., & Johnson, D. K. (2012). Conversion of pentose-derived furans into hydrocarbon fuels. Preprints is American Chemical Society's Division of Petroleum Chemistry, 57, 612–613.

    CAS  Google Scholar 

  3. Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Applied Microbiology and Biotechnology, 56(1-2), 17–34.

    Article  CAS  PubMed  Google Scholar 

  4. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  5. Laminu, L. S., Obada, D. O., Samotu, I. A., Jeremiah, M., & Kashim, Z. A. (2014). The impact of gasoline and synthesized ethanol blends on the emissions of a spark ignition engine. Military Operations Research, 11, 391–396.

    Google Scholar 

  6. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861.

    Article  CAS  PubMed  Google Scholar 

  7. Alizadeh, H., Teymouri, F., Gilbert, T. I., & Dale, B. E. (2005). Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 121-124, 1133–1141.

    Article  CAS  PubMed  Google Scholar 

  8. Feng, L., Qin, L., Liu, Z. H., Dong, C. Y., Li, B. Z., & Yuan, Y. J. (2013). Combined severity during pretreatment chemical and temperature on the saccharification of wheat straw using acids and alkalis of differing strength. Bioresources, 9, 24–38.

    Article  Google Scholar 

  9. Singh, J., Suhag, M., & Dhaka, A. (2015). Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydrate Polymers, 117, 624–631.

    Article  CAS  PubMed  Google Scholar 

  10. Toquero, C., & Bolado, S. (2014). Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresource Technology, 157, 68–76.

    Article  CAS  PubMed  Google Scholar 

  11. Oliveira, S. C. T., Figueiredo, A. B., Evtuguin, D. V., & Saraiva, J. A. (2012). High pressure treatment as a tool for engineering of enzymatic reactions in cellulosic fibres. Bioresource Technology, 107, 530–534.

    Article  CAS  PubMed  Google Scholar 

  12. Horn, S. J., Nguyen, Q. D., Westereng, B., Nilsen, P. J., & Eijsink, V. G. H. (2011). Screening of steam explosion conditions for glucose production from non-impregnated wheat straw. Biomass & Bioenergy, 35(12), 4879–4886.

    Article  CAS  Google Scholar 

  13. Xiao, X., Bian, J., Li, M. F., Xu, H., Xiao, B., & Sun, R. C. (2014). Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresource Technology, 159, 41–47.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, J. S., Lee, Y. Y., & Kim, T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 119, 42–48.

    Article  CAS  Google Scholar 

  15. Zhang, Y. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824.

    Article  CAS  PubMed  Google Scholar 

  16. Han, M., Choi, G. W., Kim, Y., & Koo, B. C. (2011). Bioethanol production by miscanthus as a lignocellulosic biomass: focus on high efficiency conversion to glucose and ethanol. Bioresources, 6, 1939–1953.

    CAS  Google Scholar 

  17. Jaisamut, K., Leona, P., Petra, P., Mojmír, R., & Melzoch, K. (2013). Optimization of alkali pretreatment of wheat straw to be used as substrate for biofuels production. Plant, Soil and Environment, 59, 537–542.

    Article  Google Scholar 

  18. Mawaheb, M. Z. D. (2011). Experimental and kinetic modelling of multicomponent gas/liquid ozone reactions in aqueous phase: experimental investigation and Matlab modelling of the ozone mass transfer and multicomponent chemical reactions in a well agitated semi-batch gas/liquid reactor. PhD, University of Bradford.

  19. Vidal, P. F., & Molinier, J. (1988). Ozonolysis of lignin — improvement of in vitro digestibility of poplar sawdust. Biomass, 16(1), 1–17.

    Article  CAS  Google Scholar 

  20. Bule, M. V., Gao, A. H., Hiscox, B., & Chen, S. (2013). Structural modification of lignin and characterization of pretreated wheat straw by ozonation. Journal of Agricultural and Food Chemistry, 61(16), 3916–3925.

    Article  CAS  PubMed  Google Scholar 

  21. García-Cubero, M. T., González-Benito, G., Indacoechea, I., Coca, M., & Bolado, S. (2009). Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology, 100(4), 1608–1613.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang, C. Y., Pei, H. S., Wang, S. S., Cui, Z. Y., & Liu, P. (2016). Enhanced enzymatic hydrolysis of poplar after combined dilute NaOH and fenton pretreatment. BioResources, 11, 7522–7536.

    CAS  Google Scholar 

  23. Lee, J. W., Ji, Y. K., Jang, H. M., Min, W. L., & Park, J. M. (2015). Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization. Bioresource Technology, 182, 296–301.

    Article  CAS  PubMed  Google Scholar 

  24. Sun, S. N., Cao, X. F., Sun, S. L., Xu, F., Song, X. L., Sun, R. C., & Jones, G. (2014). Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation. Biotechnology for Biofuels, 7, 116.

    PubMed  PubMed Central  Google Scholar 

  25. Sun, S. N., Cao, X. F., Zhang, X. M., Xu, F., Sun, R. C., & Jones, G. L. (2014). Characteristics and enzymatic hydrolysis of cellulose-rich fractions from steam exploded and sequentially alkali delignified bamboo (Phyllostachys pubescens). Bioresource Technology, 163, 377–380.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, W., Zhang, C., Tong, S., Cui, Z., & Liu, P. (2018). Enhanced enzymatic hydrolysis and structural features of corn stover by NaOH and ozone combined pretreatment. Molecules, 23(6), 1300.

    Article  PubMed Central  CAS  Google Scholar 

  27. Fang, S., Wang, W., Tong, S., Zhang, C., & Liu, P. (2018). Evaluation of the effects of isolated lignin on cellulose enzymatic hydrolysis of corn stover pretreatment by NaOH combined with ozone. Molecules (Basel, Switzerland), 23, 1495.

    Article  Google Scholar 

  28. Gea, G., Murillo, M. B., & Arauzo, J. (2002). Thermal Degradation of Alkaline Black Liquor from Straw. Thermogravimetric Study. Industrial and Engineering Chemistry Research, 41(19), 4714–4721.

    Article  CAS  Google Scholar 

  29. Rocha, G. J. M., Nascimento, V. M., Silva, V. F. N. D., Corso, D. L. S., & Gonçalves, A. R. (2014). Contributing to the environmental sustainability of the second generation ethanol production: delignification of sugarcane bagasse with sodium hydroxide recycling. Industrial Crops and Products, 59, 63–68.

    Article  CAS  Google Scholar 

  30. Capolupo, L., & Faraco, V. (2016). Green methods of lignocellulose pretreatment for biorefinery development. Applied Microbiology and Biotechnology, 100(22), 9451–9467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sluiter, B. H. A., Hames, B., & Ruliz-Peinadd, R. (2010). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, 1617, 1–16.

  32. Sun, F., & Chen, H. (2010). Evaluation of enzymatic hydrolysis of wheat straw pretreated by atmospheric glycerol autocatalysis. Journal of Chemical Technology & Biotechnology, 82, 1039–1044.

    Article  CAS  Google Scholar 

  33. Chandel, A. K., Silva, S. S. D., & Singh, O. V. (2013). Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. Bioenergy Research, 6(1), 388–401.

    Article  CAS  Google Scholar 

  34. Lee, J. W., & Jeffries, T. W. (2011). Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresource Technology, 102(10), 5884–5890.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, J., Liu, X., He, X., Guo, X., Lu, Y., & Zhang, B. (2011). Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by Disruption of the FPSl Aquaglyceroporin Gene. Biotechnology Letters, 33(2), 277–284.

    Article  CAS  PubMed  Google Scholar 

  36. Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 91–106.

    Article  CAS  Google Scholar 

  37. Panneerselvam, A., Sharma-Shivappa, R. R., Kolar, P., Ranney, T., & Peretti, S. (2013). Potential of ozonolysis as a pretreatment for energy grasses. Bioresource Technology, 148, 242–248.

    Article  CAS  PubMed  Google Scholar 

  38. Panneerselvam, A., Sharma-Shivappa, R. R., Kolar, P., Clare, D. A., & Ranney, T. (2013). Hydrolysis of ozone pretreated energy grasses for optimal fermentable sugar production. Bioresource Technology, 148, 97–104.

    Article  CAS  PubMed  Google Scholar 

  39. Feng, Z., Alén, R., & Pakkanen, H. (2002). Characterization of black liquors from soda-AQ pulping of reed canary grass (Phalaris arundinacea L.). Holzforschung, 56, 298–303.

    Article  CAS  Google Scholar 

  40. Melinda, G., Gergely, K., & Kati, R. (2007). Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochemistry, 42, 1135–1139.

    Article  CAS  Google Scholar 

  41. Wu, J., Upreti, S., & Ein-Mozaffari, F. (2013). Ozone pretreatment of wheat straw for enhanced biohydrogen production [J]. International Journal of Hydrogen Energy, 38(25), 10270–10276.

    Article  CAS  Google Scholar 

  42. Travaini, R., Otero, M. D. M., Coca, M., Da-Silva, R., & Bolado, S. (2013). Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresource Technology, 133, 332–339.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Z.Z. and J.Z.; methodology: Z.Z.; investigation: Z.Z. and J.Z.; data curation: Z.Z., J.Z., Y.L., and F.L.; writing—original draft preparation, J.Z.; writing—review and editing, Z.Z.; supervision, P.L.; project administration, P.L. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ping Liu.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhang, J., Li, Y. et al. Effects and Mechanisms of Alkali Recycling and Ozone Recycling on Enzymatic Conversion in Alkali Combined with Ozone Pretreatment of Corn Stover. Appl Biochem Biotechnol 193, 281–295 (2021). https://doi.org/10.1007/s12010-020-03425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03425-4

Keywords

Navigation