Skip to main content
Log in

Comparison of Pre-treatment Technologies to Improve Sewage Sludge Biomethanization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This research study evaluates various pre-treatments to improve sewage sludge solubilization prior to treatment by mesophilic anaerobic digestion. Microwave, thermal, and sonication pre-treatments were compared as these pre-treatments are the most commonly used for this purpose. The solubilization of sewage sludge was evaluated through the variation in soluble total organic carbon (sTOC, mg/L) and soluble total nitrogen (sTN, mg/L). Thermal and microwave pre-treatments increased sTOC/VS by 19.2% and 83.4% (VS, total volatile solids), respectively, after applying lower specific energy through (20 kJ/g TS, approximately) (TS, total solids) unlike the sonication pre-treatment, which required 136 kJ/g TS. Although sTN content did not increase significantly with the pre-treatments with respect to sTOC, both showed proportional trends. Sonication pre-treatments allowed the highest increase in volatile fatty acids (VFA) with respect to the raw sewage sludge (15% ∆VFA/sTOC). Methane production with and without pre-treatment was also evaluated. Methane production increased by 95% after applying sonication pre-treatment compared to the methane production of raw sewage sludge. Thermal and microwave pre-treatments entailed lower improvements (29% and 20%, respectively). Economically, thermal pre-treatments were the most viable alternative at real scale.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lo, K. V., Srinivasan, A., Liao, P. H., & Bailey, S. (2015). Microwave oxidation treatment of sewage sludge. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 50(8), 882–889. https://doi.org/10.1080/10934529.2015.1019811.

    Article  CAS  Google Scholar 

  2. Hendrickx, T. L. G. (2009). Aquatic worm reactor for improved sludge processing and resource recovery. PhD Thesis, Wageningen RU, Wageningen (Netherlands).

  3. Martín, M. Á., González, I., Serrano, A., & Siles, J. Á. (2015). Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge. Journal of Environmental Management, 147, 330–337. https://doi.org/10.1016/j.jenvman.2014.09.022.

    Article  CAS  PubMed  Google Scholar 

  4. Appels, L., Houtmeyers, S., Degrève, J., Van Impe, J., & Dewil, R. (2013). Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion. Bioresource Technology, 128, 598–603. https://doi.org/10.1016/j.biortech.2012.11.007.

    Article  CAS  PubMed  Google Scholar 

  5. Montalvo, S., Ojeda, F., Huiliñir, C., Guerrero, L., Borja, R., & Castillo, A. (2016). Performance evaluation of micro-aerobic hydrolysis of mixed sludge: Optimum aeration and effect on its biochemical methane potential. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 51(14), 1269–1277. https://doi.org/10.1080/10934529.2016.1215195.

    Article  CAS  Google Scholar 

  6. Zhang, L., Zhang, Y., Zhang, Q., Verpoort, F., Cheng, W., Cao, L., & Li, M. (2014). Sludge gas production capabilities under various operational conditions of the sludge thermal hydrolysis pretreatment process. Journal of the Energy Institute, 87(2), 121–126. https://doi.org/10.1016/j.joei.2014.03.016.

    Article  CAS  Google Scholar 

  7. Bolzonella, D., Pavan, P., Battistoni, P., & Cecchi, F. (2005). Mesophilic anaerobic digestion of waste activated sludge: Influence of the solid retention time in the wastewater treatment process. Process Biochemistry, 40, 1453–1460.

    Article  CAS  Google Scholar 

  8. Tiehm, A., Nickel, K., & Neis, U. (1997). The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Science and Technology, 36(11), 121–128. https://doi.org/10.1016/S0273-1223(97)00676-8.

    Article  CAS  Google Scholar 

  9. Serrano, A., Siles, J. A., Carmen Gutierrez, M., & Angeles Martín, M. (2015). Improvement of the biomethanization of sewage sludge by thermal pre-treatment and co-digestion with strawberry extrudate. Journal of Cleaner Production, 90, 25–33. https://doi.org/10.1016/j.jclepro.2014.11.039.

    Article  CAS  Google Scholar 

  10. Prorot, A., Julien, L., Christophe, D., & Patrick, L. (2011). Sludge disintegration during heat treatment at low temperature: A better understanding of involved mechanisms with a multiparametric approach. Biochemical Engineering Journal, 54(3), 178–184. https://doi.org/10.1016/j.bej.2011.02.016.

    Article  CAS  Google Scholar 

  11. Trzcinski, A. P., Tian, X., Wang, C., Lin, L. L., & Ng, W. J. (2015). Combined ultrasonication and thermal pre-treatment of sewage sludge for increasing methane production. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 50(2), 213–223. https://doi.org/10.1080/10934529.2014.975561.

    Article  CAS  Google Scholar 

  12. Park, B., Ahn, J. H., Kim, J., & Hwang, S. (2004). Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge. Water Science and Technology, 50(9), 17–23.

    Article  CAS  Google Scholar 

  13. Zhang, J., Xue, Y., Eshtiaghi, N., Dai, X., Tao, W., & Li, Z. (2017). Evaluation of thermal hydrolysis efficiency of mechanically dewatered sewage sludge via rheological measurement. Water Research, 116, 34–43. https://doi.org/10.1016/j.watres.2017.03.020.

  14. Wang, Q., Wei, W., Gong, Y., Yu, Q., Li, Q., Sun, J., & Yuan, Z. (2017). Technologies for reducing sludge production in wastewater treatment plants: State of the art. Science of the Total Environment, 587588, 510–521. https://doi.org/10.1016/j.scitotenv.2017.02.203.

    Article  CAS  Google Scholar 

  15. Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781.

    Article  CAS  Google Scholar 

  16. Braguglia, M., Gianico, A., & Minninni, G. (2012). Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion. Journal of Environmental Management, 95, 139–143.

    Article  Google Scholar 

  17. Wang, Q., Kuninobu, M., Kakimoto, K., I.-Ogawa, H., & Kato, Y. (1999). Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Bioresource Technology, 68, 309–313. https://doi.org/10.1016/S0960-8524(98)00155-2.

    Article  CAS  Google Scholar 

  18. Pilli, S., Bhunia, P., Yan, S., LeBlanc, R. J., Tyagi, R. D., & Surampalli, R. Y. (2011). Ultrasonic pretreatment of sludge: A review. Ultrasonics Sonochemistry, 18(1), 1–18. https://doi.org/10.1016/j.ultsonch.2010.02.014.

    Article  CAS  PubMed  Google Scholar 

  19. Yu, Q., Lei, H. Y., Li, Z., Li, H. L., Chen, K., Zhang, X. H., & Liang, R. L. (2010). Physical and chemical properties of waste-activated sludge after microwave treatment. Water Research, 44(9), 2841–2849. https://doi.org/10.1016/j.watres.2009.11.057.

    Article  CAS  PubMed  Google Scholar 

  20. Pino-Jelcic, S. A., Hong, S. M., & Park, J. K. (2006). Enhanced anaerobic biodegrability and inactivation of fecal coliforms and Salmonella spp. in wastewater sludge by using microwaves. Water Environment Research, 78, 209–276.

    Article  CAS  Google Scholar 

  21. Eskicioglu, C., Kennedy, K. J., & Droste, R. L. (2009). Enhanced disinfection and methane production from sewage sludge by microwave irradiation. Desalination., 248(1-3), 279–285.

    Article  CAS  Google Scholar 

  22. Serrano, A., Siles, J. A., Martín, M. A., Chica, A. F., Estévez-Pastor, F. S., & Toro-Baptista, E. (2016). Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment. Journal of Environmental Management, 177, 231–239. https://doi.org/10.1016/j.jenvman.2016.03.048.

    Article  CAS  PubMed  Google Scholar 

  23. Zheng, J., Kennedy, K. J., & Eskicioglu, C. (2009). Effect of low temperature microwave pretreatment on characteristics and mesophilic digestion of primary sludge. Environmental Technology, 30(4), 319–327. https://doi.org/10.1080/09593330902732002.

    Article  CAS  PubMed  Google Scholar 

  24. Miller, R. O. (2002). Test methods for the examination of composting and compost (TMECC). Compost Anal. Profic. Test. Progr. US Department of Agriculture (USDA) and the Composting Council Research and Education Foundation (CCREF) Publishers, Raleigh, NC (USA).

  25. AMERICAN PUBLIC HEALTH, A, Eaton, A. D., AMERICAN WATER WORKS, A, & W.E. (2005). Standard methods for the examination of water and wastewater. Washington, D.C: APHA-AWWA-WEF.

    Google Scholar 

  26. Fang, G., Zhou, X., & Wei, W. (2017). Enhancement of anaerobic digestion efficiency of enhancing anaerobic biodegradability and dewaterability of sewage sludge by microwave irradiation. International Journal of Agricultural and Biological Engineering, 10, 224–232.

    Article  Google Scholar 

  27. Yang, J., Lu, L., Ouyang, W., Gou, Y., Chen, Y., Ma, H., Guo, J., & Fang, F. (2017). Estimation of kinetic parameters of an anaerobic digestion model using particle swarm optimization. Biochemical Engineering Journal, 120, 25–32. https://doi.org/10.1016/j.bej.2016.12.022.

    Article  CAS  Google Scholar 

  28. Wilson, C. A., Tanneru, C. T., Banjade, S., Murthy, S. N., & Novak, J. T. (2011). Anaerobic digestion of raw and thermally hydrolyzed wastewater solids under various operational conditions. Water Environment Research, 83(9), 815–825. https://doi.org/10.2175/106143011x12928814444934.

    Article  CAS  PubMed  Google Scholar 

  29. Miller, D. N., & Varel, V. H. (2001). In vitro study of the biochemical origin and production limits of odorous compounds in cattle feedlots. Journal of Animal Science, 79(12), 2949–2956.

    Article  CAS  Google Scholar 

  30. Kummer, V., & Thiel, W. R. (2008). Bioaerosols – Sources and control measures. International Journal of Hygiene and Environmental Health, 211(3-4), 299–307. https://doi.org/10.1016/j.ijheh.2007.06.006.

    Article  PubMed  Google Scholar 

  31. Ge, H., Jensen, P. D., & Batstone, D. J. (2011). Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Water Research, 45(4), 1597–1606.

    Article  CAS  Google Scholar 

  32. Aylin Alagöz, B., & Orhan Yenigün, A. E. (2015). Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment. Waste Management, 46, 182–188.

    Article  Google Scholar 

  33. Liu, C.-F., Yuan, X.-Z., Zeng, G.-M., Li, W.-W., & Li, J. (2008). Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology, 99(4), 882–888. https://doi.org/10.1016/j.biortech.2007.01.013.

    Article  CAS  PubMed  Google Scholar 

  34. Balaguer, M. D., Vicent, M. T., & París, J. M. (1992). Anaerobic fluidized bed reactor with sepiolite as support for anaerobic treatment of vinasse. Biotechnology Letters, 14(5), 433–438.

    Article  CAS  Google Scholar 

  35. Eder, B., & Schulz, H. (2007). Biogas basis: Practice, Design, Plant Engineering, Examples and Costs (in German). Ökobuch, Staufen.

  36. Cano, R., Pérez-Elvira, S. I., & Fdz-Polanco, F. (2015). Energy feasibility study of sludge pretreatments: A review. Applied Energy, 149, 176–185.

    Article  CAS  Google Scholar 

  37. Kor-Bicakci, G., & Eskicioglu, C. (2019). Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renewable and Sustainable Energy Reviews. Elsevier Ltd, 110, 423–443. https://doi.org/10.1016/j.rser.2019.05.002.

    Article  CAS  Google Scholar 

  38. Li, C., Wang, X., Zhang, G., Li, J., Li, Z., Yu, G., & Wang, Y. (2018). A process combining hydrothermal pretreatment, anaerobic digestion and pyrolysis for sewage sludge dewatering and co-production of biogas and biochar: Pilot-scale verification. Bioresource Technology, 254, 187–193. https://doi.org/10.1016/j.biortech.2018.01.045.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, J., Zhao, M., Lv, C., & Yue, P. (2020). The effect of microwave pretreatment on anaerobic co-digestion of sludge and food waste: Performance, kinetics and energy recovery. Environmental Research, 189, 109856. https://doi.org/10.1016/j.envres.2020.109856.

    Article  CAS  PubMed  Google Scholar 

  40. Donoso-Bravo, A., Pérez-Elvira, S. I., & Fdz-Polanco, F. (2010). Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chemical Engineering Journal, 160(2), 607–614. https://doi.org/10.1016/j.cej.2010.03.082.

    Article  CAS  Google Scholar 

  41. Ebenezer, A. V., Kaliappan, S., Adish Kumar, S., Yeom, I. T., & Banu, J. R. (2015). Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge. Bioresource Technology, 185, 194–201. https://doi.org/10.1016/j.biortech.2015.02.102.

    Article  CAS  PubMed  Google Scholar 

  42. Bozkurt, Y. C., & Apul, O. G. (2020). Critical review for microwave pretreatment of waste-activated sludge prior to anaerobic digestion. Current Opinion in Environmental Science and Health. Elsevier B.V. https://doi.org/10.1016/j.coesh.2019.10.003.

  43. Ormaechea, P., Castrillón, L., Suárez-Peña, B., Megido, L., Fernández-Nava, Y., Negral, L., Marañón, E., & Rodríguez-Iglesias, J. (2018). Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM. Renewable Energy, 126, 897–904. https://doi.org/10.1016/j.renene.2018.04.022.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the Spanish Ministry of Economy and Competitiveness for funding this research through Project CTM2017-88723-R. The authors are also grateful to laboratory technicians Inmaculada Bellido Padillo and Marisa López Campaña.

Author information

Authors and Affiliations

Authors

Contributions

ASM, JASL, and MAMS conceived and designed the study. AS performed the experiments and analyzed the data. AS and MCGM wrote the paper. MCGM, ASM, JASL, and MAMS reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to María de los Ángeles Martín.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano, A., Siles, J.Á., Gutiérrez, M. et al. Comparison of Pre-treatment Technologies to Improve Sewage Sludge Biomethanization. Appl Biochem Biotechnol 193, 777–790 (2021). https://doi.org/10.1007/s12010-020-03454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03454-z

Keywords

Navigation