Skip to main content
Log in

Single Cell Oil (SCO)–Based Bioactive Compounds: I—Enzymatic Synthesis of Fatty Acid Amides Using SCOs as Acyl Group Donors and Their Biological Activities

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fatty acid amides (FAAs) are of great interest due to their broad industrial applications. They can be synthesized enzymatically with many advantages over chemical synthesis. In this study, the fatty acid moieties of lipids of Cunninghamella echinulata ATHUM 4411, Umbelopsis isabellina ATHUM 2935, Nannochloropsis gaditana CCAP 849/5, olive oil, and an eicosapentaenoic acid (EPA) concentrate were converted into their fatty acid methyl esters and used in the FAA (i.e., ethylene diamine amides) enzymatic synthesis, using lipases as biocatalysts. The FAA synthesis, monitored using in situ NMR, FT-IR, and thin-layer chromatography, was catalyzed efficiently by the immobilized Candida rugosa lipase. The synthesized FAAs exhibited a significant antimicrobial activity, especially those containing oleic acid in high proportions (i.e., derived from olive oil and U. isabellina oil), against several human pathogenic microorganisms, insecticidal activity against yellow fever mosquito, especially those of C. echinulata containing gamma-linolenic acid, and anticancer properties against SKOV-3 ovarian cancer cell line, especially those containing EPA in their structures (i.e., EPA concentrate and N. gaditana oil). We conclude that FAAs can be efficiently synthesized using microbial oils of different fatty acid composition and used in specific biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ASW:

Artificial seawater

CLSI:

Clinical and Laboratory Standards Institute

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FA:

Fatty acid

FAAs:

Fatty acid amides

FAMEs:

Fatty acid methyl esters

FT-IR:

Fourier-transform infrared

GLA:

Gamma-linolenic acid

LC50:

Median lethal concentration

MBC:

Minimum bactericidal concentration

MHA:

Mueller Hinton II Agar

MIC:

Minimum inhibitory concentration

NMR:

Nuclear magnetic resonance

OPSR:

Open-pond simulating reactor

PDA:

Potato dextrose agar

PUFAs:

Polyunsaturated fatty acids

SCOs:

Single cell oils

TLC:

Thin-layer chromatography

References

  1. Plastina, P., Meijerink, J., Vincken, J. P., Gruppen, H., Witkamp, R., & Gabriele, B. (2009). Selective synthesis of unsaturated N-acylethanolamines by lipase-catalyzed N-acylation of ethanolamine with unsaturated fatty acids. Letters in Organic Chemistry, 6(6), 444–447. https://doi.org/10.2174/157017809789124885.

    Article  CAS  Google Scholar 

  2. Wang, X., Wang, T., & Wang, X. (2012). An improved method for the synthesis of N-stearoyl and N-palmitoylethanolamine. Journal of the American Oil Chemists' Society, 89, 1305–1313. https://doi.org/10.1007/s11746-012-2017-y.

    Article  CAS  Google Scholar 

  3. Wang, X., Wang, X., & Wang, T. (2012). Synthesis of oleoylethanolamide using lipase. Journal of Agricultural and Food Chemistry, 60(1), 451–457. https://doi.org/10.1021/jf203629w.

    Article  CAS  PubMed  Google Scholar 

  4. Dettori, L., Jelsch, C., Guiavarc’h, Y., Delaunay, S., Framboisier, X., Chevalot, I., & Humeau, C. (2018). Molecular rules for selectivity in lipase-catalysed acylation of lysine. Process Biochemistry, 74, 50–60. https://doi.org/10.1016/j.procbio.2018.07.021.

    Article  Google Scholar 

  5. Bourkaib, M. C., Delaunay, S., Framboisier, X., Hôtel, L., Aigle, B., Humeau, C., Guiavarc’h, Y., & Chevalot, I. (2020). N-acylation of L-amino acids in aqueous media: evaluation of the catalytic performances of Streptomyces ambofaciens aminoacylases. Enzyme and Microbial Technology, 137, 109536. https://doi.org/10.1016/j.enzmictec.2020.109536.

    Article  CAS  PubMed  Google Scholar 

  6. Adlercreutz, D., Tufvesson, P., Karlsson, A., & Hatti-Kaul, R. (2010). Alkanolamide biosurfactants: techno-economic evaluation of biocatalytic versus chemical production. Industrial Biotechnology, 6(4), 204–211. https://doi.org/10.1089/ind.2010.6.204.

    Article  CAS  Google Scholar 

  7. Tanvir, R., Javeed, A., & Rehman, Y. (2018). Fatty acids and their amide derivatives from endophytes: new therapeutic possibilities from a hidden source. FEMS Microbiology Letters, 365(12), fny114. https://doi.org/10.1093/femsle/fny114.

    Article  CAS  Google Scholar 

  8. Khare, S. K., Kumar, A., & Kuo, T. M. (2009). Lipase-catalyzed production of a bioactive fatty amide derivative of 7,10-dihydroxy-8(E)-octadecenoic acid. Bioresource Technology, 100(3), 1482–1485. https://doi.org/10.1016/j.biortech.2008.08.011.

    Article  CAS  PubMed  Google Scholar 

  9. Dang, H. T., Kang, G. J., Yoo, E. S., Hong, J., Choi, J. S., Kim, H. S., Chung, H. Y., & Jung, J. H. (2011). Evaluation of endogenous fatty acid amides and their synthetic analogues as potential anti-inflammatory leads. Bioorganic & Medicinal Chemistry, 19(4), 1520–1527. https://doi.org/10.1016/j.bmc.2010.12.046.

    Article  CAS  Google Scholar 

  10. Meijerink, J., Balvers, M., & Witkamp, R. (2013). N-acyl amines of docosahexaenoic acid and other n–3 polyunsatured fatty acids—from fishy endocannabinoids to potential leads. British Journal of Pharmacology, 169(4), 772–783. https://doi.org/10.1111/bph.12030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arjuna, A. (2014). Production of polyunsaturated fatty acids by fungi: a review. International Journal of Pharma and Bio Sciences, 5(3), 931–954.

    Google Scholar 

  12. Bellou, S., Baeshen, M. N., Elazzazy, A. M., Aggeli, D., Sayegh, F., & Aggelis, G. (2014). Microalgal lipids biochemistry and biotechnological perspectives. Biotechnology Advances, 32(8), 1476–1493. https://doi.org/10.1016/j.biotechadv.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  13. Bellou, S., Triantaphyllidou, I. E., Aggeli, D., Elazzazy, A. M., Baeshen, M. N., & Aggelis, G. (2016). Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Current Opinion in Biotechnology, 37, 24–35. https://doi.org/10.1016/j.copbio.2015.09.005.

    Article  CAS  PubMed  Google Scholar 

  14. Athenaki, M., Gardeli, C., Diamantopoulou, P., Tchakouteu, S. S., Sarris, D., Philippoussis, A., & Papanikolaou, S. (2018). Lipids from yeasts and fungi: physiology, production and analytical considerations. Journal of Applied Microbiology, 124(2), 336–367. https://doi.org/10.1111/jam.13633.

    Article  CAS  PubMed  Google Scholar 

  15. Kavadia, A., Komaitis, M., Chevalot, I., Blanchard, F., Marc, I., & Aggelis, G. (2001). Lipid and γ-linolenic acid accumulation in strains of zygomycetes growing on glucose. Journal of the American Oil Chemists' Society, 78(4), 341–346. https://doi.org/10.1007/s11746-001-0266-3.

    Article  CAS  Google Scholar 

  16. Papanikolaou, S., & Aggelis, G. (2019). Sources of microbial oils with emphasis to Mortierella (Umbelopsis) isabellina fungus. World Journal of Microbiology and Biotechnology, 35(4), 63. https://doi.org/10.1007/s11274-019-2631-z.

    Article  CAS  PubMed  Google Scholar 

  17. Kothri, M., Mavrommati, M., Elazzazy, A. M., Baeshen, M. N., Moussa, T. A. A., & Aggelis, G. (2020). Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiology Letters, 367(5), fnaa028. https://doi.org/10.1093/femsle/fnaa028.

    Article  CAS  PubMed  Google Scholar 

  18. Mozaffarian, D., & Wu, J. H. Y. (2011). Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. Journal of the American College of Cardiology, 58(20), 2047–2067. https://doi.org/10.1016/j.jacc.2011.06.063.

    Article  CAS  PubMed  Google Scholar 

  19. Alakhras, R., Bellou, S., Fotaki, G., Stephanou, G., Demopoulos, N. A., Papanikolaou, S., & Aggelis, G. (2015). Fatty acid lithium salts from Cunninghamella echinulata have cytotoxic and genotoxic effects on HL-60 human leukemia cells. Engineering in Life Sciences, 15(2), 243–253. https://doi.org/10.1002/elsc.201400208.

    Article  CAS  Google Scholar 

  20. Sayegh, F., Elazzazy, A., Bellou, S., Moustogianni, A., Elkady, A. I., Baeshen, M. N., & Aggelis, G. (2016). Production of polyunsaturated single cell oils possessing antimicrobial and anticancer properties. Annals of Microbiology, 66(3), 937–948. https://doi.org/10.1007/s13213-015-1176-0.

    Article  CAS  Google Scholar 

  21. Bellou, S., & Aggelis, G. (2012). Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. Journal of Biotechnology, 164(2), 318–329. https://doi.org/10.1016/j.jbiotec.2013.01.010.

    Article  CAS  PubMed  Google Scholar 

  22. Dourou, M., Tsolcha, O. N., Tekerlekopoulou, A. G., Bokas, D., & Aggelis, G. (2018). Fish farm effluents are suitable growth media for Nannochloropsis gaditana, a polyunsaturated fatty acid producing microalga. Engineering in Life Sciences, 18(11), 851–860. https://doi.org/10.1002/elsc.201800064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bellou, S., Moustogianni, A., Makri, A., & Aggelis, G. (2012). Lipids containing polyunsaturated fatty acids synthesized by zygomycetes grown on glycerol. Applied Biochemistry and Biotechnology, 166(1), 146–158. https://doi.org/10.1007/s12010-011-9411-z.

    Article  CAS  PubMed  Google Scholar 

  24. Ruan, Z., Hollinshead, W., Isaguirre, C., Tang, Y. J., Liao, W., & Liu, Y. (2015). Effects of inhibitory compounds in lignocellulosic hydrolysates on Mortierella isabellina growth and carbon utilization. Bioresource Technology, 183, 18–24. https://doi.org/10.1016/j.biortech.2015.02.026.

    Article  CAS  PubMed  Google Scholar 

  25. Harde, S. M., Wang, Z., Horne, M., Zhu, J. Y., & Pan, X. (2016). Microbial lipid production from SPORL-pretreated Douglas fir by Mortierella isabellina. Fuel, 175, 64–74. https://doi.org/10.1016/j.fuel.2016.02.023.

    Article  CAS  Google Scholar 

  26. Gardeli, C., Athenaki, M., Xenopoulos, E., Mallouchos, A., Koutinas, A. A., Aggelis, G., & Papanikolaou, S. (2017). Lipid production and characterization by Mortierella (Umbelopsis) isabellina cultivated on lignocellulosic sugars. Journal of Applied Microbiology, 123(6), 1461–1477. https://doi.org/10.1111/jam.13587.

    Article  CAS  PubMed  Google Scholar 

  27. Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226(1), 497–509.

    Article  CAS  Google Scholar 

  28. AFNOR. (1984). Recueil de normes françaises des corps gras, graines oléagineuses, produits dérivés. Paris: Association française de normalisation.

    Google Scholar 

  29. Wiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163–175. https://doi.org/10.1038/nprot.2007.521.

    Article  CAS  PubMed  Google Scholar 

  30. Finney, D. J. (1971). Probit analysis (3rd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  31. Gema, H., Kavadia, A., Dimou, D., Tsagou, V., Komaitis, M., & Aggelis, G. (2002). Production of γ-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peels. Applied Microbiology and Biotechnology, 58(3), 303–307. https://doi.org/10.1007/s00253-001-0910-7.

    Article  CAS  PubMed  Google Scholar 

  32. Papanikolaou, S., Komaitis, M., & Aggelis, G. (2004). Single cell oil (SCO) production by Mortierella isabellina grown on high sugar content media. Bioresource Technology, 95(3), 287–291. https://doi.org/10.1016/j.biortech.2004.02.016.

    Article  CAS  PubMed  Google Scholar 

  33. Subramaniam, R., Dufreche, S., Zappi, M., & Bajpai, R. (2010). Microbial lipids from renewable resources: production and characterization. Journal of Industrial Microbiology & Biotechnology, 37(12), 1271–1287. https://doi.org/10.1007/s10295-010-0884-5.

    Article  CAS  Google Scholar 

  34. Dourou, M., Aggeli, D., Papanikolaou, S., & Aggelis, G. (2018). Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Applied Microbiology and Biotechnology, 102(6), 2509–2523. https://doi.org/10.1007/s00253-018-8813-z.

    Article  CAS  PubMed  Google Scholar 

  35. Chatzifragkou, A., Fakas, S., Galiotou-Panayotou, M., Komaitis, M., Aggelis, G., & Papanikolaou, S. (2010). Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. European Journal of Lipid Science and Technology, 112(9), 1048–1057. https://doi.org/10.1002/ejlt.201000027.

    Article  CAS  Google Scholar 

  36. Fakas, S., Papanikolaou, S., Batsos, A., Galiotou-Panayotou, M., Mallouchos, A., & Aggelis, G. (2009). Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass and Bioenergy, 33(4), 573–580. https://doi.org/10.1016/j.biombioe.2008.09.006.

    Article  CAS  Google Scholar 

  37. Gotor-Fernández, V., Busto, E., & Gotor, V. (2006). Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Advanced Synthesis & Catalysis, 348(7–8), 797–812. https://doi.org/10.1002/adsc.200606057.

    Article  CAS  Google Scholar 

  38. Tufvesson, P., Annerling, A., Hatti-Kaul, R., & Adlercreutz, D. (2007). Solvent-free enzymatic synthesis of fatty alkanolamides. Biotechnology and Bioengineering, 97(3), 447–453. https://doi.org/10.1002/bit.21258.

    Article  CAS  PubMed  Google Scholar 

  39. Al-Mulla, E. A. J., Yunus, W. M. Z. W., Ibrahim, N. A. B., & Rahman, M. Z. A. (2010). Enzymatic synthesis of fatty amides from palm olein. Journal of Oleo Science, 59(2), 59–64. https://doi.org/10.5650/jos.59.59.

    Article  CAS  PubMed  Google Scholar 

  40. Sharma, J., Batovska, D., Kuwamori, Y., & Asano, Y. (2005). Enzymatic chemoselective synthesis of secondary amide surfactant from N-methylethanol amine. Journal of Bioscience and Bioengineering, 100(6), 662–666. https://doi.org/10.1263/jbb.100.662.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, K. J., Nag, A., & Shaw, J. F. (2001). Lipase-catalyzed synthesis of fatty acid diethanolamides. Journal of Agricultural and Food Chemistry, 49(12), 5761–5764. https://doi.org/10.1021/jf0107858.

    Article  CAS  PubMed  Google Scholar 

  42. Levinson, W. E., Kuo, T. M., & Kurtzman, C. P. (2005). Lipase catalyzed production of novel hydroxylated fatty amides in organic solvents. Enzyme and Microbial Technology, 37(1), 126–130. https://doi.org/10.1016/j.enzmictec.2005.02.001.

    Article  CAS  Google Scholar 

  43. Tremblay, H., St-Georges, C., Legault, M., Morin, C., Fortin, S., & Marsault, E. (2014). One-pot synthesis of polyunsaturated fatty acid amides with anti-proliferative properties. Bioorganic & Medicinal Chemistry Letters, 24(24), 5635–5638. https://doi.org/10.1016/j.bmcl.2014.10.084.

    Article  CAS  Google Scholar 

  44. Mudiyanselage, A. Y., Yao, H., Viamajala, S., Varanasi, S., & Yamamoto, K. (2015). Efficient production of alkanolamides from microalgae. Industrial & Engineering Chemistry Research, 54(16), 4060–4065. https://doi.org/10.1021/ie503980g.

    Article  CAS  Google Scholar 

  45. Novak, A. F., Solar, J. M., Mod, R. R., Magne, F. C., & Skau, E. L. (1969). Antimicrobial activity of some N-substituted amides of long-chain fatty acids. Applied Microbiology, 18(6), 1050–1056.

    Article  CAS  Google Scholar 

  46. Stevens, S., & Hofmeyr, J. H. S. (1993). Effects of ethanol, octanoic and decanoic acids on fermentation and the passive influx of protons through the plasma membrane of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 38(5), 656–663. https://doi.org/10.1007/BF00182806.

    Article  CAS  Google Scholar 

  47. Shao, J., He, Y., Li, F., Zhang, H., Chen, A., Luo, S., & Gu, J. D. (2016). Growth inhibition and possible mechanism of oleamide against the toxin-producing cyanobacterium Microcystis aeruginosa NIES-843. Ecotoxicology, 25(1), 225–233. https://doi.org/10.1007/s10646-015-1582-x.

    Article  CAS  PubMed  Google Scholar 

  48. Powell, J. R. (2018). Mosquito-borne human viral diseases: Why Aedes aegypti? The American Journal of Tropical Medicine and Hygiene, 98(6), 1563–1565. https://doi.org/10.4269/ajtmh.17-0866.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rodrigues, A. M., & Sampaio, C. de G., de Souza, J. S. N., Campos, A. R., da Silva, A. B. R., de Morais, S. M., & Martins, V. E. P. (2019). Different susceptibilities of Aedes aegypti and Aedes albopictus larvae to plant-derived products. Revista da Sociedade Brasileira de Medicina Tropical, 52, e20180197. https://doi.org/10.1590/0037-8682-0197-2018.

    Article  PubMed  Google Scholar 

  50. Kannathasan, K., Senthikumar, A., Venkatesalu, V., & Chandrasekaran, M. (2008). Larvicidal activity of fatty acid methyl esters of Vitex species against Culex quinquefasciatus. Parasitology Research, 103(4), 999–1001. https://doi.org/10.1007/s00436-008-1078-1.

    Article  PubMed  Google Scholar 

  51. Perumalsamy, H., Jang, M. J., Kim, J. R., Kadarkarai, M., & Ahn, Y. J. (2015). Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasites & Vectors, 8(1), 237. https://doi.org/10.1186/s13071-015-0848-8.

    Article  CAS  Google Scholar 

  52. Komalamisra, N., Trongtokit, Y., Rongsriyam, Y., & Apiwathnasorn, C. (2005). Screening for larvicidal activity in some Thai plants against four mosquito vector species. The Southeast Asian Journal of Tropical Medicine and Public Health, 36(6), 1412–1422.

    PubMed  Google Scholar 

  53. Ravi Kiran, S., Bhavani, K., Sita Devi, P., Rajeswara Rao, B. R., & Janardhan Reddy, K. (2006). Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresource Technology, 97(18), 2481–2484. https://doi.org/10.1016/j.biortech.2005.10.003.

    Article  CAS  PubMed  Google Scholar 

  54. Magalhães, L. A., Lima, M., Marques, M. O., Facanali, R., Pinto, A. C., & Tadei, W. P. (2010). Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules, 15(8), 5734–5741. https://doi.org/10.3390/molecules15085734.

    Article  CAS  PubMed  Google Scholar 

  55. Aguiar, R. W. S., dos Santos, S. F., da Silva Morgado, F., Ascencio, S. D., de Mendonça Lopes, M., Fernandes Viana, K., Didonet, J., & Ribeiro, B. M. (2015). Insecticidal and repellent activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus. PLoS One, 10(2), e0116765. https://doi.org/10.1371/journal.pone.0116765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Harada, K., Suomalainen, M., Uchida, H., Masui, H., Ohmura, K., Kiviranta, J., Niku-Paavola, M. L., & Ikemoto, T. (2000). Insecticidal compounds against mosquito larvae from Oscillatoria agardhii strain 27. Environmental Toxicology, 15(2), 114–119. https://doi.org/10.1002/(SICI)1522-7278(2000)15:2<114::AID-TOX7>3.0.CO;2-P.

    Article  CAS  Google Scholar 

  57. Berry, J. P., Gantar, M., Perez, M. H., Berry, G., & Noriega, F. G. (2008). Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Marine Drugs, 6(2), 117–146. https://doi.org/10.3390/md20080007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mizerakis, P., Stathopoulou, P., Tsiamis, G., Baeshen, M. N., Mahyoub, J. A., Elazzazy, A. M., Bellou, S., Sakoulogeorga, E., Triantaphyllidou, I. E., Mazioti, T., Katsoris, P., & Aggelis, G. (2017). Bacterial diversity of the outflows of a Polichnitos (Lesvos, Greece) hot spring, laboratory studies of a Cyanobacterium sp. strain and potential medical applications. Annals of Microbiology, 67(10), 643–654. https://doi.org/10.1007/s13213-017-1293-z.

    Article  CAS  Google Scholar 

  59. Kim, S. I., & Ahn, Y. J. (2017). Larvicidal activity of lignans and alkaloid identified in Zanthoxylum piperitum bark toward insecticide-susceptible and wild Culex pipiens pallens and Aedes aegypti. Parasites & Vectors, 10(1), 221. https://doi.org/10.1186/s13071-017-2154-0.

    Article  CAS  Google Scholar 

  60. dos Santos, D. S., Piovesan, L. A., & D' Oca, C. R., Hack, C. R., Treptow, T. G., Rodrigues, M. O., Vendramini-Costa, D. B., Ruiz, A. L., de Carvalho, J. E., & D' Oca, M. G. (2015). Antiproliferative activity of synthetic fatty acid amides from renewable resources. Bioorganic & Medicinal Chemistry, 23(2), 340–347. https://doi.org/10.1016/j.bmc.2014.11.019.

    Article  CAS  Google Scholar 

  61. Wall, R., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2010). Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition Reviews, 68(5), 280–289. https://doi.org/10.1111/j.1753-4887.2010.00287.x.

    Article  PubMed  Google Scholar 

  62. Siddiqui, R. A., Harvey, K. A., Xu, Z., Bammerlin, E. M., Walker, C., & Altenburg, J. D. (2011). Docosahexaenoic acid: a natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects. BioFactors, 37(6), 399–412. https://doi.org/10.1002/biof.181.

    Article  CAS  PubMed  Google Scholar 

  63. Allam-Ndoul, B., Guénard, F., Barbier, O., & Vohl, M. C. (2017). A study of the differential effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on gene expression profiles of stimulated thp-1 macrophages. Nutrients, 9(5), 424. https://doi.org/10.3390/nu9050424.

    Article  CAS  PubMed Central  Google Scholar 

  64. Blanckaert, V., Ulmann, L., Mimouni, V., Antol, J., Brancquart, L., & Chénais, B. (2010). Docosahexaenoic acid intake decreases proliferation, increases apoptosis and decreases the invasive potential of the human breast carcinoma cell line MDA-MB-231. International Journal of Oncology, 36(3), 737–742. https://doi.org/10.3892/ijo_00000549.

    Article  CAS  PubMed  Google Scholar 

  65. Chen, H. W., Chao, C. Y., Lin, L. L., Lu, C. Y., Liu, K. L., Lii, C. K., & Li, C. C. (2013). Inhibition of matrix metalloproteinase-9 expression by docosahexaenoic acid mediated by heme oxygenase 1 in 12-O-tetradecanoylphorbol-13-acetate-induced MCF-7 human breast cancer cells. Archives of Toxicology, 87(5), 857–869. https://doi.org/10.1007/s00204-012-1003-3.

    Article  CAS  PubMed  Google Scholar 

  66. Ravacci, G. R., Brentani, M. M., Tortelli, T. C., Torrinhas, R. S., Santos, J. R., Logullo, A. F., & Waitzberg, D. L. (2015). Docosahexaenoic acid modulates a HER2-associated lipogenic phenotype, induces apoptosis, and increases trastuzumab action in HER2-overexpressing breast carcinoma cells. BioMed Research International, 2015, 838652–838613. https://doi.org/10.1155/2015/838652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jóźwiak, M., Filipowska, A., Fiorino, F., & Struga, M. (2020). Anticancer activities of fatty acids and their heterocyclic derivatives. European Journal of Pharmacology, 871, 172937. https://doi.org/10.1016/j.ejphar.2020.172937.

    Article  CAS  PubMed  Google Scholar 

  68. Giordano, C., Plastina, P., Barone, I., Catalano, S., & Bonofiglio, D. (2020). n-3 polyunsaturated fatty acid amides: new avenues in the prevention and treatment of breast cancer. International Journal of Molecular Sciences, 21(7), 2279. https://doi.org/10.3390/ijms21072279.

    Article  CAS  PubMed Central  Google Scholar 

  69. Burstein, S., & Salmonsen, R. (2008). Acylamido analogs of endocannabinoids selectively inhibit cancer cell proliferation. Bioorganic & Medicinal Chemistry, 16(22), 9644–9651. https://doi.org/10.1016/j.bmc.2008.10.015.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge with thanks the University of Jeddah technical and financial support.

Funding

This work was funded by the University of Jeddah, Saudi Arabia, under Grant No. (UJ-06-18-ICP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Aggelis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author agreement

Hatim A. El-Baz, Ahmed M. Elazzazy, Tamer S. Saleh, Panagiotis Dritsas, Jazem A. Mahyoub, Mohammed N. Baeshen, Hekmat R. Madian, Mohammed Alkhaled, and George Aggelis have all agreed to submission.

Supplementary Information

ESM 1

(DOCX 1839 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Baz, H.A., Elazzazy, A.M., Saleh, T.S. et al. Single Cell Oil (SCO)–Based Bioactive Compounds: I—Enzymatic Synthesis of Fatty Acid Amides Using SCOs as Acyl Group Donors and Their Biological Activities. Appl Biochem Biotechnol 193, 822–845 (2021). https://doi.org/10.1007/s12010-020-03450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03450-3

Keywords

Navigation