Skip to main content

Advertisement

Log in

Ethylene/propylene separation using mixed matrix membranes of poly (ether block amide)/nano-zeolite (NaY or NaA)

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Generally, the energy and capital intensive cryogenic distillation process is applied to separate light olefins. To lower the cost of light olefin production, mixed matrix membranes (MMMs) incorporating nano-zeolite (NaY or NaA) into a rubbery poly (ether block amide) (PEBA 2533) were fabricated to separate a propylene/ethylene mixture. The effect of additive content and kind, MMM thickness, and operating temperature and pressure on the separation performance of the synthesized membranes for a propylene/ethylene mixture were investigated. As an additive, NaY was found to be more effective than NaA. Interestingly, the result of pure gas adsorption was consistent with the permeation performance of the membranes. Membranes with 6 wt% NaY showed the highest C3H6/C2H4 selectivity in all synthesized membranes (3 wt%–10 wt%), on which, the C3H6/C2H4 selectivity was increased from 2.3 to 13.1, the permeability of propylene increased from 194 barrer to 262 barrer and the permeability of ethylene decreased from 85 barrer to 19.8 barrer when the propylene concentration in feed mixture increased from 10 mol% to 80 mol% at −35 °C and 0.2 MPa. This membrane has the potential to separate propylene and ethylene in industry, and this work will push forward the membrane separation process for olefin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Faiz and K. Li, Desalination, 287, 82 (2012).

    Article  CAS  Google Scholar 

  2. L. Li, R. B. Lin and R. Krishna, Sicence, 362, 443 (2018).

    Article  CAS  Google Scholar 

  3. W. Fan, X. Wang and X. Zhang, ACS Cent. Sci., 5, 1261 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Z. Jingsheng and L. I. Dongfeng, Chem. Ind. Eng. Prog., 34, 3207 (2015).

    Google Scholar 

  5. C. A. Grande, C. Gigola and A. E. Rodrigues, I&EC Process Des. Dev., 41, 85 (2016).

    Google Scholar 

  6. H. Wu, Y. Chen and D. Lv, Sep. Purif. Technol., 212, 51 (2019).

    Article  CAS  Google Scholar 

  7. L. Yu, M. Grahn and P. Ye, J. Membr. Sci., 524, 428 (2017).

    Article  CAS  Google Scholar 

  8. R. W. Baker and B. T. Low, Macromolecules, 47, 6999 (2014).

    Article  CAS  Google Scholar 

  9. Y.-H. Chu, D. Yancey and L. Xu, J. Membr. Sci., 548, 609 (2018).

    Article  CAS  Google Scholar 

  10. H. Sanaeepur, S. Mashhadikhan and G. Mardassi, Korean J. Chem. Eng., 36, 1339 (2019).

    Article  CAS  Google Scholar 

  11. H.-J. Salgado-Gordon and G. Valbuena-Moreno, CT&F, Cienc., Tecnol. Futuro, 4, 73 (2011).

    Article  CAS  Google Scholar 

  12. Y. Wang, S. B. Peh and D. Zhao, Small, 15, 1900058 (2019).

    Article  Google Scholar 

  13. M. Naghsh, M. Sadeghi and A. Moheb, J. Membr. Sci., 423–424, 97 (2012).

    Article  Google Scholar 

  14. C. Zhang, Y. Dai, and J. R. Johnson, J. Membr. Sci., 389, 34 (2012).

    Article  CAS  Google Scholar 

  15. K. S. Liao, J. Y. Lai and T. S. Chung, J. Membr. Sci., 515, 36 (2016).

    Article  CAS  Google Scholar 

  16. L. C. Mei, Y. Xiao and T. S. Chung, Carbon, 47, 1857 (2009).

    Article  Google Scholar 

  17. H. S. Kunjattu, V. Ashok and A. Bhaskar, J. Membr. Sci., 549, 38 (2017).

    Article  Google Scholar 

  18. L. Li, A. Chakma and X. Feng, J. Membr. Sci., 279, 645 (2006).

    Article  Google Scholar 

  19. J. J. Hou, P. C. Liu and Z. Y. Tang, J. Mater. Chem. A, 7, 23489 (2019).

    Article  CAS  Google Scholar 

  20. S. Japip, H. Wang and Y. Xiao, J. Membr. Sci., 467, 162 (2014).

    Article  CAS  Google Scholar 

  21. S. H. Choi, J. H. Kim and S. B. Lee, J. Membr. Sci., 299, 54 (2007).

    Article  CAS  Google Scholar 

  22. X. Jiang, J. Ding and A. Kumar, J. Membr. Sci., 323, 371 (2008).

    Article  CAS  Google Scholar 

  23. H. Lin and B. D. Freeman, J. Membr. Sci., 239, 105 (2004).

    Article  CAS  Google Scholar 

  24. L. M. Robeson, J. Membr. Sci., 62, 165 (1991).

    Article  CAS  Google Scholar 

  25. L. M. Robeson, J. Membr. Sci., 320, 390 (2008).

    Article  CAS  Google Scholar 

  26. B. Kraftschik and W. J. Koros, Macromolecules, 46, 6908 (2013).

    Article  CAS  Google Scholar 

  27. Y. Liu, S. Yu and H. Wu, J. Membr. Sci., 469, 198 (2014).

    Article  CAS  Google Scholar 

  28. X. R. Zhang and T. Zhang, J. Membr. Sci., 560, 38 (2018).

    Article  CAS  Google Scholar 

  29. L. Dong, C. Zhang and Y. Bai, ACS Sustainable Chem. Eng., 4, 3486 (2016).

    Article  CAS  Google Scholar 

  30. Z. Farashi, S. Azizi and M. R.-D. Arzhandi, J. Nat. Gas Sci. Eng., 72, 103019 (2019).

    Article  CAS  Google Scholar 

  31. M. N. Nejad, M. Asghari and M. Afsari, ChemBioEng Rev., 3, 276 (2016).

    Article  Google Scholar 

  32. M. M. Khan, V. Filiz and G. Bengtson, Procedia Eng., 9, 1 (2014).

    Google Scholar 

  33. S. A. Habibiannejad, A. Aroujalian and A. Raisi, RSC Adv., 6, 79563 (2016).

    Article  CAS  Google Scholar 

  34. J. Ahn, W. J. Chung and I. Pinnau, J. Membr. Sci., 314, 123 (2008).

    Article  CAS  Google Scholar 

  35. S. M. Davoodi, M. Sadeghi and M. Naghsh, RSC Adv., 6, 23746 (2016).

    Article  CAS  Google Scholar 

  36. C. H. Park, J. H. Lee and J. P. Jung, J. Membr. Sci., 533, 48 (2017).

    Article  CAS  Google Scholar 

  37. M. Pazirofteh, M. Dehghani and S. Niazi, J. Mol. Liq., 241, 646 (2017).

    Article  CAS  Google Scholar 

  38. R. S. Murali, A. F. Ismail and M. A. Rahman, Sep. Purif. Technol., 129, 1 (2014).

    Article  Google Scholar 

  39. J. Ahmad and M. B. Hägg, J. Membr. Sci., 427, 73 (2013).

    Article  CAS  Google Scholar 

  40. H. Sanaeepur, B. Nasernejad and A. Kargari, Greenhouse Gases: Sci. Technol., 5, 291 (2015).

    Article  CAS  Google Scholar 

  41. Y. Dai, X. Ruan and Z. Yan, Sep. Purif. Technol., 166, 171 (2016).

    Article  CAS  Google Scholar 

  42. I. Tirouni, M. Sadeghi and M. Pakizeh, Sep. Purif. Technol., 141, 394 (2015).

    Article  CAS  Google Scholar 

  43. M. O. Najimu and I. H. Aljundi, J. Nat. Gas Sci. Eng., 59, 9 (2018).

    Article  CAS  Google Scholar 

  44. L. Hu, Z. Zhang and S. Xie, Catal. Commun., 10, 900 (2009).

    Article  CAS  Google Scholar 

  45. L. Liu, A. Chakma and X. Feng, Chem. Eng. Sci., 61, 6142 (2006).

    Article  CAS  Google Scholar 

  46. N. J. Saleh, B. Y. S. Al-Zaidi and Z. M. Sabbar, Arabian J. Sci. Eng., 11, 5819 (2017).

    Google Scholar 

  47. B. A. Holmberg, H. Wang and J. M. Norbeck, Micropor. Mesopor. Mater., 59, 13 (2003).

    Article  CAS  Google Scholar 

  48. S. Sang, Z. Liu and P. Tian, Mater. Lett., 60, 1131 (2006).

    Article  CAS  Google Scholar 

  49. S. C. Feng, J. Z. Ren and K. S. Hua, Sep. Purif. Technol., 116, 25 (2013).

    Article  CAS  Google Scholar 

  50. L. Dong, C. Zhang and Y. Bai, RSC Adv., 5, 4947 (2015).

    Article  CAS  Google Scholar 

  51. V. I. Bondar, B. D. Freeman and I. Pinnau, J. Polym. Sci., Part B: Polym. Phys., 38, 2051 (2015).

    Article  Google Scholar 

  52. J. H. Kim, S. Y. Ha and Y. M. Lee, J. Membr. Sci., 190, 179 (2001).

    Article  CAS  Google Scholar 

  53. B. Wilks and M. E. Rezac, Atmos. Chem. Phys., 85, 2436 (2002).

    CAS  Google Scholar 

  54. K. Chatterjee, D. Dollimore and K. Alexander, Int. J. Pharm., 213, 31 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. A. Hazra, D. Dollimore and K. Alexander, Thermochim. Acta, 392, 221 (2002).

    Article  Google Scholar 

  56. R. M. Stephenson and S. Malamowski, AIChE J., 35, 877 (1989).

    Google Scholar 

  57. R. Sander, Atmos. Chem. Phys., 15, 4399 (2015).

    Article  CAS  Google Scholar 

  58. P. F. Nealey, R. E. Cohen and A. S. Argon, Macromolecules, 27, 4193 (1994).

    Article  CAS  Google Scholar 

  59. T. C. Merkel, R. Blanc and I. Ciobanu, J. Membr. Sci., 447, 177 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Key projects of the National Natural Science Foundation of China (No. 21336006), the Scientific Research Foundation for Returned Scholars of Ministry of Education (No. 2017-047), the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (No. 2017-K15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Wang or Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yan, M., Feng, X. et al. Ethylene/propylene separation using mixed matrix membranes of poly (ether block amide)/nano-zeolite (NaY or NaA). Korean J. Chem. Eng. 38, 576–586 (2021). https://doi.org/10.1007/s11814-020-0712-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0712-1

Keywords

Navigation