Skip to main content
Log in

Mathematical and experimental modeling of reverse osmosis (RO) process

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper provides a mathematical simulation model for the reverse osmosis (RO) process with series elements. A mathematical simulation model was developed based on the mass, material and energy balances considering the concentration polarization. The simulation model is open-source and easy to couple with other computational tools like optimization algorithms and SCADA1 applications. An RO laboratory pilot was also set up in the Hydraulic Lab of Shahid Chamran University of Ahvaz to validate the simulation results. Comparing the results of the simulation model with the experiments and ROSA commercial software, the proposed simulation model functions well and is reliable. The comparisons indicate that the simulation results are over 96% close to ROSA and over 80% close to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A:

membrane surface area [m2]

Aeff :

effective surface area of membrane [m2]

Am :

pure water permeability constant [m/s·kPa]

C:

solution concentration [kg/m3]

CF :

feed concentration [kg/m3]

CP :

permeate concentration [kg/m3]

CR :

retentate concentration [kg/m3]

Cw :

concentration on the feed side of membrane wall [kg/m3]

d:

membrane channel diameter [m]

Ds:

solute diffusivity [m2/s]

dsp :

spacer diameter [m]

i:

stage counter

j:

pressure vessel counter in stage

jw :

water flux [m3/m2·s]

k:

mass transfer coefficient [m/s]

l ch :

length of the membrane channel [m]

M:

molar concentration [mol/m3]

n:

van’t Hoff factor

Nei :

number of the membrane element in pressure vessel of the ith stage

Ni:

number of membrane element in the ith stage

NPVi :

number of pressure vessel in the ith stage

Peff :

residual transmembrane pressure [kPa]

P f :

feed pressure [kPa]

Pp :

permeate pressure [kPa]

QF :

feed flow rate [m3/s]

QFPV :

feed flow rate in the pressure vessel [m3/s]

Q F1 :

feed flow rate to the first stage [m3/s]

Q F2 :

feed flow rate to the second stage [m3/s]

QF3 :

feed flow rate to the third stage [m3/s]

QP :

permeate flow rate [m3/s]

QPPV :

permeate flow rate in the pressure vessel [m3/s]

QR :

retentate flow rate [m3/s]

QR1 :

retentate flow rate from the first stage [m3/s]

QR2 :

retentate flow rate from the second stage [m3/s]

R:

universal gases constant [8.314 m3·Pa/mol·°K]

Re:

Reynolds number

RE:

relative error

rec1:

recovery in the first stage

rec2:

recovery in the second stage

rec3:

recovery in the third stage

Sc:

schmidt number

St:

spacer thickness [m]

T:

temperature [°C]

T0:

reference temperature [25 °C]

TCF:

temperature’s correction factor

TF :

feed water temperature [°C]

VSP :

volume of the spacer [m3]

VT :

total volume [m3]

z:

element counter in the Pressure vessel

μ :

feed water viscosity [Pa·s]

α :

fraction of the stream branching to the left from a split point

β :

fraction of the stream branching to the right from a split point

γ :

fraction of the stream branching straight forward from a split point

ΔPf :

pressure drop due to friction [kPa]

ΔPin :

pressure drop at inlet [kPa]

π :

osmotic pressure [kPa]

π p :

osmotic pressure on the permeate side [kPa]

π w :

osmotic pressure on the feed side of membrane wall [kPa]

ρ :

density [kg/m3]

ε :

Porosity

f:

feed

F:

feed split ratio

p:

permeate

r:

retentate

R1:

retentate split ratio for first module

R2:

retentate split ratio for second module

References

  1. H. Kotb, E. Amer and K. Ibrahim, Desalination, 357, 246 (2015).

    Article  CAS  Google Scholar 

  2. A. Altaee, Desalination, 291, 101 (2012).

    Article  CAS  Google Scholar 

  3. A. Villafafila and I. Mujtaba, Desalination, 155, 1 (2003).

    Article  CAS  Google Scholar 

  4. M. Barello, D. Manca, R. Patel and I. M. Mujtaba, Comput. Chem. Eng., 83, 139 (2015).

    Article  CAS  Google Scholar 

  5. M. G. Marcovecchio, P. A. Aguirre and N. J. Scenna, Desalination, 184, 259 (2005).

    Article  CAS  Google Scholar 

  6. V. Geraldes, N. E. Pereira and M. Norberta de Pinho, Ind. Eng. Chem. Res., 44, 1897 (2005).

    Article  CAS  Google Scholar 

  7. C. Guria, P. K. Bhattacharya and S. K. Gupta, Comput. Chem. Eng., 29, 1977 (2005).

    Article  CAS  Google Scholar 

  8. Y.-Y. Lu, Y.-D. Hu, X.-L. Zhang, L.-Y. Wu and Q.-Z. Liu, J. Membr. Sci., 287, 219 (2007).

    Article  CAS  Google Scholar 

  9. Y.-J. Choi, T.-M. Hwang, H. Oh, S.-H. Nam, S. Lee, J.-c. Jeon, S. J. Han and Y. Chung, Desalination and Water Treatment, 33, 273 (2011).

    Article  Google Scholar 

  10. Y. Du, L. Xie, Y. Wang, Y. Xu and S. Wang, Ind. Eng. Chem. Res., 51, 11764 (2012).

    Article  CAS  Google Scholar 

  11. Y. Du, L. Xie, J. Liu, Y. Wang, Y. Xu and S. Wang, Desalination, 333, 66 (2014).

    Article  CAS  Google Scholar 

  12. Y. Du, L. Xie, Y. Liu, S. Zhang and Y. Xu, Desalination, 365, 365 (2015).

    Article  CAS  Google Scholar 

  13. E. R. Saavedra, A. G. Gotor, S. O. Pérez Báez, A. R. Martín, A. Ruiz-García and A. C. González, Desalination and Water Treatment, 51, 4790 (2013).

    Article  CAS  Google Scholar 

  14. E. Ruiz-Saavedra, A. Ruiz-García and A. Ramos-Martín, Desalination and Water Treatment, 55, 2562 (2015).

    Article  CAS  Google Scholar 

  15. J.-S. Choi and J.-T. Kim, J. Ind. Eng. Chem., 21, 261 (2015).

    Article  CAS  Google Scholar 

  16. H. Kotb, E. Amer and K. Ibrahim, Energy, 103, 127 (2016).

    Article  Google Scholar 

  17. V. Haluch, E. F. Zanoelo and C. J. Hermes, Chem. Eng. Res. Des., 122, 243 (2017).

    Article  CAS  Google Scholar 

  18. K. P. Chee, K. P. Wai, C. H. Koo and W. C. Chong, EDP Sciences, E3S Web of Conferences, 65, 05022 (2018).

  19. M. Al-Obaidi, A. Alsarayreh, A. Al-Hroub, S. Alsadaie and I. M. Mujtaba, Desalination, 443, 272 (2018).

    Article  CAS  Google Scholar 

  20. C. Chen and H. Qin, Processes, 7, 271 (2019).

    Article  CAS  Google Scholar 

  21. O. P. Maure and S. Mungkasi, AIP Publishing LLC, AIP Conference Proceedings, 2202, 020043 (2019).

  22. M. Li, Chem. Eng. Res. Des., 148, 440 (2019).

    Article  CAS  Google Scholar 

  23. D. Gaublomme, L. Strubbe, M. Vanoppen, E. Torfs, S. Mortier, E. Cornelissen, B. De Gusseme, A. Verliefde and I. Nopens, Desalination, 490, 114509 (2020).

    Article  CAS  Google Scholar 

  24. J. Siegel, C. Wangmo, J. Cuhorka, A. Otoupalíková and M. Bittner, Environ. Technol. Innovation, 17, 100584 (2020).

    Article  Google Scholar 

  25. M. Ligaray, N. Kim, S. Park, J.-S. Park, J. Park, Y. Kim and K. H. Cho, Chem. Eng. J., 395, 125082 (2020).

    Article  CAS  Google Scholar 

  26. T. M. Mansour, T. M. Ismail, K. Ramzy and M. Abd El-Salam, Alexandria Eng. J., 59, 3741 (2020).

    Article  Google Scholar 

  27. DOW, FILMTEC Membranes, product information catalog, http://www.lenntech.com/feedback/feedback_uk.htm?ref_title=Filmtec/Filmtec-Reverse-Osmosis-Product-Catalog-L.pdf (2006).

Download references

Acknowledgements

The authors would like to thank Ghadir Khuzestan Water Company and Khuzestan Water and Power Authority for their financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Hadadian.

Additional information

Supervisory Control And Data Acquisition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadadian, Z., Zahmatkesh, S., Ansari, M. et al. Mathematical and experimental modeling of reverse osmosis (RO) process. Korean J. Chem. Eng. 38, 366–379 (2021). https://doi.org/10.1007/s11814-020-0697-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0697-9

Keywords

Navigation