Skip to main content
Log in

Fibers of Ultra-High Molecular Weight Polyethylene Obtained by Gel Spinning with Polyalphaolefin Oil

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The rapid growth of polymer technology has provided viable and more straightforward methods for the development of ultra-high molecular weight polyethylene (UHMWPE) fibers. The gel spinning process yields fibers with improved properties and less impact on the environment. The material used as a solvent for the swelling of the polymer reveals an excellent potential for the processing of new fibers. In the present work, the influence of a new spinning solvent based on polyalphaolefin (PAO100) in the UHMWPE was evaluated. All fibers were obtained by extrusion in concentrations of 0.04 to 60% m/m of PAO100 oil, with screw rotation speed increasing from 20 to 60 rpm, leaving the extruder nozzle of 1.82 mm. Besides, n-hexane was used in the process of extracting oil from UHMWPE fibers. The fibers did not undergo to the drawing process. The results show that the fibers containing 20–40% m/m of PAO100 presented higher linear density, indicating the orientation of the crystals in a compact morphology and the higher relaxation after leaving the nozzle, increasing die-swell. After extraction of PAO100 with n-hexane, huge voids were observed in SEM images, which indicates the alignment of subfibers inside the fiber. The average size of the crystallite related to the polyethylene orthorhombic crystal increased significantly, showing that the number of entanglements decreased. The results indicate that PAO100 oil acts as a lubricant, increasing the mobility of the chains, leading to higher crystallization. The present study presents exciting findings on the effects of PAO100 oil on the morphology, crystalline structures, and thermal properties of UHMWPE fibers, pointing out the oil concentration necessary for the formation of fibers with higher crystallinity and thermal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Khalil, A. Kowalski, and N. Hopkinson, Addit. Manuf., 10, 67 (2016).

    CAS  Google Scholar 

  2. D. Li, L. Zhou, X. Wang, L. He, and X. Yang, Materials, 12, 1746 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  3. D. Xiong and S. Ge, Wear, 250, 242 (2001).

    Article  Google Scholar 

  4. L. F. M. Rocha, S. B. Cordeiro, L. C. Ferreira, F. J. H. Ramos, and M. F. V. Marques, Mater. Sci. Appl., 7, 863 (2016).

    CAS  Google Scholar 

  5. Y. Chen, X. Nie, H. Zou, M. Liang, and P. Liu, J. Appl. Polym. Sci., 130, 2487 (2013).

    Article  CAS  Google Scholar 

  6. P. Bracco, A. Bellare, A. Bistolfi, and S. Affatato, Materials, 10, 791 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  7. R. Siskey, H. Smelt, K. Boon-Ceelen, and M. Persson. in UHMWPE Biomaterials Handbook, William Andrew Publishing, 2016, p 398.

  8. C. S. Li, X. C. Huang, Y. Li, N. Yang, Z. Shen, and X. H. Fan, Polym. Adv. Technol., 25, 1014 (2014).

    Article  CAS  Google Scholar 

  9. M. A. Samad and S. K. Sinha, Wear, 270, 395 (2011).

    Article  CAS  Google Scholar 

  10. C. Donnet and A. Erdemir, Surf. Coat. Technol., 180, 76 (2004).

    Article  CAS  Google Scholar 

  11. J. Du, Z. Wang, J. Yu, S. Ullah, B. Yang, C. Li, and J. Xu, Adv. Funct. Mater., 28, 1707351 (2018).

    Article  CAS  Google Scholar 

  12. S. A. Atwood, D. W. Van Citters, E. W. Patten, J. Furmanski, M. D. Ries, and L. A. Pruitt, J. Mech. Behav. Biomed. Mater., 4, 1033 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. M. Shimel, I. Gouzman, E. Grossman, Z. Barkay, S. Katz, A. Bolker, and R. Verker, Adv. Mater. Interfaces, 5, 1800295 (2018).

    Article  CAS  Google Scholar 

  14. M. Xiao, J. Yu, J. Zhu, L. Chen, J. Zhu, and Z. Hu, J. Mater. Sci., 46, 5690 (2011).

    Article  CAS  Google Scholar 

  15. L. Xia, P. Xi, and B. Cheng, Mater. Lett., 147, 79 (2015).

    Article  CAS  Google Scholar 

  16. F. Wang, L. Liu, P. Xue, and M. Jia, Polymers, 9, 96 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  17. J. Wang, C. Cao, D. Yu, and X. Chen, Appl. Comp. Mater., 25, 35 (2018).

    Article  CAS  Google Scholar 

  18. J. H. Park and G. C. Rutledge, J. Mater. Sci., 53, 3049 (2018).

    Article  CAS  Google Scholar 

  19. F. Wang, L. Liu, P. Xue, M. Jia, and H. Sun, J. Eng. Fiber Fabr., 13, 155892501801300304 (2018).

    Google Scholar 

  20. X. Fang, J. Shi, T. Wyatt, and D. Yao, Text. Res. J., 87, 2323 (2017).

    Article  CAS  Google Scholar 

  21. D. A. Baker, R. S. Hastings, and L. Pruitt, Polymer, 41, 795 (2000).

    Article  CAS  Google Scholar 

  22. V. O. Aguiar, V. J. Pita, and M. D. F. V. Marques, J. Appl. Polym. Sci., 136, 47459 (2019).

    Article  CAS  Google Scholar 

  23. I. K. Aliyu, A. S. Mohammed, and A. Al-Qutub, Polym. Comp., 40, E1301–E1311 (2019).

    Article  CAS  Google Scholar 

  24. T. P. Wyatt, A. T. Chien, S. Kumar, and D. Yao, Polym. Eng. Sci., 54, 2839 (2014).

    Article  CAS  Google Scholar 

  25. J. M. Deitzel, P. McDaniel, and J. W. Gillespie Jr., in Structure and Properties of High-Performance Fibers, Woodhead Publishing, 2017, p 167.

  26. X. Shi, Y. Bin, D. Hou, Y. Men, and M. Matsuo, Polym. J., 46, 21 (2014).

    Article  CAS  Google Scholar 

  27. H. Xu, M. An, Y. Lv, L. Zhang, and Z. Wang, Polym. Bull., 74, 721 (2017).

    Article  CAS  Google Scholar 

  28. M. F. An, Y. Lv, H. J. Xu, Q. Gu, and Z. B. Wang, Chinese J. Polym. Sci., 35, 524 (2017).

    Article  CAS  Google Scholar 

  29. X. Fang, T. Wyatt, J. Shi, and D. Yao, J. Mater. Sci., 53, 11901 (2018).

    Article  CAS  Google Scholar 

  30. W. Li, M. Huang, and R. Ma, Polym. Adv. Technol., 29, 1287 (2018).

    Article  CAS  Google Scholar 

  31. Z. Wu, Z. Zhang, and K. Mai, J. Therm. Anal. Calorim., 139, 1111 (2020).

    Article  CAS  Google Scholar 

  32. N. Li, Q. Lu, W. Yin, C. Xiao, and J. Li, J. Membr. Sci., 595, 117527 (2020).

    Article  CAS  Google Scholar 

  33. R. Benda, J. Bullen, and A. Plomer, J. Synthetic Lubric., 13, 41 (1996).

    Article  CAS  Google Scholar 

  34. H. Van der Werff and U. Heisserer, in Advanced Fibrous Composite Materials for Ballistic Protection, Woodhead Publishing, 2016, p 71.

  35. R. Quijada, A. Narvaez, M. D. Pizzol, S. Liberman, A. Arli Filho, G. B. Galland, J. Appl. Polym. Sci., 79, 221 (2001).

    Article  CAS  Google Scholar 

  36. L. Fang, P. Gao, and Y. Leng, Compos. Part B: Eng., 38, 345 (2007).

    Article  CAS  Google Scholar 

  37. Y. L. Joo, O. H. Han, H. K. Lee, and J. K. Song, Polymer, 41, 1355 (2000).

    Article  CAS  Google Scholar 

  38. H. S. Jaggi, S. Kumar, D. Das, B. K. Satapathy, and A. R. Ray, J. Appl. Polym. Sci., 132, 41251 (2015).

    Article  CAS  Google Scholar 

  39. P. B. Mcdaniel, J. M. Deitzel, and J. W. Gillespie Jr., Polymer, 69, 148 (2015).

    Article  CAS  Google Scholar 

  40. Z. Maghsoud and H. Moaddel, Iranian Polym. J., 16, 363 (2007).

    CAS  Google Scholar 

  41. D. Zherebtsov, D. Chukov, E. Statnik, and V. Torokhov, Materials, 13, 1739 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  42. L. Zhou, X. Wang, Y. Zhang, P. Zhang, and Z. Li, Materials, 12, 2657 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  43. L. Zheng, A. J. Waddon, R. J. Farris, and E. B. Coughlin, Macromolecules, 35, 2375 (2002).

    Article  CAS  Google Scholar 

  44. L. Kurelec, S. Rastogi, R. J. Meier, and P. J. Lemstra, Macromolecules, 33, 5593 (2000).

    Article  CAS  Google Scholar 

  45. W. Xinwei, Z. Han, and S. Yongfei, J. Polym. Eng., 38, 1 (2018).

    Article  CAS  Google Scholar 

  46. F. Wang, L. Liu, P. Xue, and M. Jia, Polymers, 9, 96 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  47. J. Loomis, H. Ghasemi, X. Huang, N. Thoppey, J. Wang, J. K. Tong, Y. Xu, X. Li, C.-T. Lin, and G. Chen, Technology, 2, 189 (2014).

    Article  Google Scholar 

  48. S. Ronca, T. Igarashi, G. Forte, and S. Rastogi, Polymer, 123, 203 (2017).

    Article  CAS  Google Scholar 

  49. S. M. Lee, H.-J. Jeon, S. W. Choi, and H. H. Song, Macromol. Res., 14, 640 (2006).

    Article  CAS  Google Scholar 

  50. Y. Guo and S. N. Leung, AIP Adv., 8, 045126 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Fátima Vieira Marques.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: The authors want to acknowledge FAPERJ and Capes for financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Chagas, N.P., Lopes da Silva Fraga, G. & Marques, M.d.V. Fibers of Ultra-High Molecular Weight Polyethylene Obtained by Gel Spinning with Polyalphaolefin Oil. Macromol. Res. 28, 1082–1090 (2020). https://doi.org/10.1007/s13233-020-8147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8147-4

Keywords

Navigation