Skip to main content

Advertisement

Log in

A thermo-kinetic study on co-pyrolysis of oil shale and polyethylene terephthalate using TGA/FT-IR

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study explored the effects of polyethylene terephthalate (PET) blending during the pyrolysis of oil shale (OS). Dynamic pyrolysis and co-pyrolysis tests at heating rates in the range from 5 to 40 °C/min were carried out using a thermogravimetric analyzer (TGA) coupled to a Fourier transform infrared spectrometer (FT-IR) to determine the kinetic parameters of the process and for online detection of evolved gasses. Pyrolytic decomposition of OS included a multi-stage decomposition process, while PET decomposed only in a single step. The kinetics of pyrolysis and co-pyrolysis was determined via model-free iso-conversional methods, namely Friedman, FWO, Starink, Vyazovkin, in a conversion degree range of 0.1–0.9. The kinetic models were validated with the obtained data to describe pyrolytic and co-pyrolytic degradation mechanisms, and the regression coefficients were between 0.9823 and 0.9999. The results showed that the activation energy of co-pyrolysis was evidently lower than that of PET or OS pyrolysis. This led to the conclusion that co-pyrolysis could be a potential method for obtaining shale oil due to the synergy between OS and PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. C. Ong W-H. Chen, A. Farooq, Y. Y. Gan, K. T. Lee and V. Ashokkumar, Renew. Sust. Energy Rev., 113, 109266 (2019).

    CAS  Google Scholar 

  2. A. Tahmasebi, K. Maliutina and J. Yu, Korean J. Chem. Eng, 36, 393 (2019).

    CAS  Google Scholar 

  3. Y. J. Bae, C. Ryu, J.-K. Jeon, J. Park, D. J. Suh, Y.-W. Suh, D. Chang and Y.-K. Park, Bioresour. Technol., 102, 3512 (2011).

    CAS  PubMed  Google Scholar 

  4. Y.-M. Km, H. W. Lee, S. H. Jang, J. Jeong, S. Ryu, S.-C. Jung and Y.-K. Park, Korean J. Chem. Eng., 37, 493 (2020).

    Google Scholar 

  5. S. Siramard, L. Lin, C. Zhang, D. Lai, S. Cheng and G. Xu, Fuel Process. Technol., 148, 248 (2016).

    CAS  Google Scholar 

  6. H. Jiang, S. Deng, J. Chen, M. Zhang, S. Li, Y. Shao, J. Yang and J. Li, Energy Convers. Manage., 143, 505 (2017).

    CAS  Google Scholar 

  7. C. Culin, K. Tente, A. Konist, B. Maaten, L. Loo, E. Suuberg and I. Külaots, Oil Shale, 36, 353 (2019).

    CAS  Google Scholar 

  8. Z. Chang, M. Chu, C. Zhang, S. Bai, H. Lin and L. Ma, J. Anal. Appl. Pyrolysis, 130, 269 (2018).

    CAS  Google Scholar 

  9. M. Kılıç, A. E. Pütün, B. B. Uzun and E. Pütün, Energy Convers. Manage, 78, 461 (2014).

    Google Scholar 

  10. P. A. Bozkurt, O. Tosun and M. Canel, J. Energy Inst., 90, 355 (2017).

    CAS  Google Scholar 

  11. J. Tu and J. J. Sheng, J. Taiwan Inst. Chem. E., 106, 169 (2020).

    CAS  Google Scholar 

  12. Z. Chang, M. Chu, C. Zhang, S. Bai, H. Lin and L. Ma, Korean J. Chem. Eng., 34, 3111 (2017).

    CAS  Google Scholar 

  13. L. Al-Makhadmeh, J. Maier, M. Al-Harahsheh and G. Scheffknecht, Fuel, 103, 421 (2013).

    CAS  Google Scholar 

  14. A. Al-Harahsheh, M. Al-Harahsheh, A. Al-Otoom and M. Allawzi, Fuel Process. Technol., 90, 818 (2009).

    CAS  Google Scholar 

  15. M. W. Amer, J. S. A. Alhesan, M. Marshall, A. M. Awwad and O. S. Al-Ayed, J. Anal. Appl. Pyrolysis, 140, 219 (2019).

    CAS  Google Scholar 

  16. J. Shah and M. R. Jan, J. Taiwan Inst. Chem. E., 51, 96 (2015).

    Google Scholar 

  17. H. W. Ryu, Y. F. Tsang, H. W. Lee, J. Jae, S.-C. Jung, S. S. Lam, E. D. Park and Y.-K. Park, Chem. Eng. J., 373, 375 (2019).

    CAS  Google Scholar 

  18. L. Zhou, T. Luo and Q. Huang, Energy Convers. Manage., 50, 705 (2009).

    CAS  Google Scholar 

  19. X. Wang, D. Ma, Q. Jin, S. Deng, H. Stančin, H. Tan and H. Mikulčić, Fuel Process. Technol., 194, 106127. (2019).

    CAS  Google Scholar 

  20. S. Park, J. Jae, A. Farooq, E. E. Kwon, E. D. Park, J.-M. Ha, S.-C. Jung and Y.-K. Park, Appl. Energy, 255, 113801 (2019).

    CAS  Google Scholar 

  21. A. Aboulkas and M. Nadifiyine, Fuel Process. Technol, 89, 1000 (2008).

    CAS  Google Scholar 

  22. L. Ballice, M. Yüksel, M. Sağlam, R. Reimert and H. Schulz, Fuel, 77, 1431 (1998).

    CAS  Google Scholar 

  23. J. Zhang, Z. Zhong, B. Zhang, Z. Xue, F. Guo and J. Wang, Clean Technol. Environ. Policy, 18, 1621 (2016).

    CAS  Google Scholar 

  24. Z. Till, T. Varga, J. Sója, N. Miskolczi and T. Chován, Energy Convers. Manage, 173, 320 (2018).

    CAS  Google Scholar 

  25. Z. Zhang, M. Zhu and D. Zhang, Appl. Energy, 220, 87 (2018).

    CAS  Google Scholar 

  26. E. A. Williams and P. T. Williams, J. Chem. Technol. Biotechnol., 70, 9 (1997).

    CAS  Google Scholar 

  27. G. Özsin, and A. E. Pütün, J. Clean. Prod., 205, 1127 (2018).

    Google Scholar 

  28. T. Yoshioka, G. Grause, C. Eger, W. Kaminsky and A. Okuwaki, Polym. Degrad. Stabil., 86, 499 (2004).

    CAS  Google Scholar 

  29. Ö. Çepelioğullar and A. E. Pütün, J. Anal. Appl. Pyrolysis, 110, 363 (2014).

    Google Scholar 

  30. J. M. Park, S. Keel, J. Yun, J. H. Yun and S.-S. Lee, Korean J. Chem. Eng., 34, 2204 (2017).

    CAS  Google Scholar 

  31. F. Yang, Q. Yu, H. Xie, Z. Zuo, L. Hou and Q. Qin, Korean J. Chem. Eng., 35, 1626 (2018).

    CAS  Google Scholar 

  32. G. Özsin and A. E. Pütün, Korean J. Chem. Eng., 35, 428 (2018).

    Google Scholar 

  33. P. Parthasarathy, H. S. Choi, J. G. Hwang and H. C. Park, Korean J. Chem. Eng., 34, 1678 (2017).

    CAS  Google Scholar 

  34. A. Boytsova, N. Kondrasheva and J. Ancheyta, Energy Fuels, 32, 1132 (2018).

    CAS  Google Scholar 

  35. C. Yao, H. Tian, Z. Hu, Y. Yin, D. Chen and X. Yan, Korean J. Chem. Eng., 35, 511 (2018).

    CAS  Google Scholar 

  36. Y. Lin, Y. Liao, Z. Yu, S. Fang, Y. Lin, Y. Fan, X. Peng and X. Ma, Energy Convers. Manage., 118, 345 (2016).

    CAS  Google Scholar 

  37. J. Huang, J. Liu, J. Chen, W. Xie, J. Kuo, X. Lu, K. Chang, S. Wen, G. Sun, H. Cai, M. Buyukada and F. Evrendilek, Bioresour. Technol., 266, 389 (2018).

    CAS  PubMed  Google Scholar 

  38. H. L. Friedman, J. Polym. Sci. Pol. Sym. C, 6, 183 (1964).

    Google Scholar 

  39. J. H. Flynn and L. A. Wall, J. Res. Nat. Bur. Stand, 70, 487 (1966).

    CAS  Google Scholar 

  40. T. Ozawa, Bull. Chem. Soc. Jpn., 38, 1881 (1965).

    CAS  Google Scholar 

  41. M. Starink, Thermochim. Acta, 288, 97 (1996).

    CAS  Google Scholar 

  42. S. Vyazovkin, J. Therm. Anal., 49, 1493 (1997).

    CAS  Google Scholar 

  43. S. Niu, Y. Zhou, H. Yu, C. Lu and K. Han, Energy Convers. Manage, 149, 495 (2017).

    CAS  Google Scholar 

  44. X. Wang, S. Deng, H. Tan, A. Adeosun, M. Vujanović, F. Yang and N. Duić, Energy Convers. Manage., 118, 399 (2016).

    CAS  Google Scholar 

  45. D. Lai, G. Zhang and G. Xu. Fuel Process. Technol, 158, 191 (2017).

    CAS  Google Scholar 

  46. B. Holland and J. Hay, Polymer, 43, 1835 (2002).

    CAS  Google Scholar 

  47. P. T. Williams and N. Ahmad, Appl. Energy, 66, 113 (2000).

    CAS  Google Scholar 

  48. J. Jaber, S. Probert and P. Williams, Energy, 24, 761 (1999).

    CAS  Google Scholar 

  49. P. T. Williams and N. Ahmad, Fuel, 78, 653 (1999).

    CAS  Google Scholar 

  50. Z. Chen, Q. Zhu, X. Wang, B. Xiao and S. Liu, Energy Convers. Manage., 105, 251 (2015).

    CAS  Google Scholar 

  51. L. Tang, Y. Yan, Y. Meng, J. Wang, P. Jiang, C. H. Pang and T. Wu, Energy Procedia, 158, 1694 (2019).

    CAS  Google Scholar 

  52. X. Yuan, T. He, H. Cao and Q. Yuan, Renewable Energy, 107, 489 (2017).

    CAS  Google Scholar 

  53. S. Zhao, M. Liu, L. Zhao and J. Lu, Korean J. Chem. Eng., 34, 3077 (2017).

    CAS  Google Scholar 

  54. M. Dai, Z. Yu, S. Fang and X. Ma, Energy Convers. Manage., 192, 1 (2019).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamzenur Özsin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özsin, G., Kılıç, M., Apaydin-Varol, E. et al. A thermo-kinetic study on co-pyrolysis of oil shale and polyethylene terephthalate using TGA/FT-IR. Korean J. Chem. Eng. 37, 1888–1898 (2020). https://doi.org/10.1007/s11814-020-0614-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0614-2

Keywords

Navigation