Skip to main content
Log in

The synthesis of silver-nanoparticle-anchored electrospun polyacrylonitrile nanofibers and a comparison with as-spun silver/polyacrylonitrile nanocomposite membranes upon antibacterial activity

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The preparation of as-spun silver–polyacrylonitrile composite nanofibers (Ag/PAN Com) and the in situ synthesis of silver nanoparticles anchored on the surface of PAN nanofibers were presented. The former were directly electrospun from the solution of PAN and silver nitrate (AgNO3). The latter (AgNPs/PAN) were prepared by immersing as-spun PAN nanofibers in AgNO3 aqueous solutions with different concentrations under the radiation of UV light, as a facilitator for the reduction of Ag ions into AgNPs. A comparison between these materials, which are based on silver and polyacrylonitrile but via two different synthetic methods, as antibacterial composite nanofiber membranes against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis), was made. The success of synthesizing was confirmed by scanning electron microscopy and transmission electron microscopy (TEM). Chemical groups on the surfaces of nanofibers were detected by Fourier transform infrared spectroscopy. The crystallinity of PAN nanofibers, the crystalline alterations of Ag/PAN Com due to the penetration of silver ions into the polymer matrix of nanofibers, and the structural models of newly formed silver nanoparticles were ascertained by x-ray diffraction (XRD). The gradual transformation of Ag ions into AgNPs, which occurred near the surfaces of Ag/PAN Com nanofibers without any catalyst agents, was observed by TEM. The occurrence was also clarified by analyzing FTIR and XRD spectra. The inhibition zones of Ag/PAN Com membranes at the first cycle of bactericidal test appeared the most expansive against both strains of bacteria even with lowering the release amount of silver. However, the AgNPs/PAN exhibited a more sustainable antibacterial ability after the second and the third incubation cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbasi E, Milani M, Fekri Aval S, Kouhi M, Akbarzadeh A, Tayefi Nasrabadi H et al (2016) Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol 42(2):173–180

    CAS  PubMed  Google Scholar 

  2. Ahluwalia V, Kumar J, Sisodia R, Shakil NA, Walia S (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crop Prod 55:202–206

    Article  CAS  Google Scholar 

  3. Cipriani E, Zanetti M, Bracco P, Brunella V, Luda MP, Costa L (2016) Crosslinking and carbonization processes in PAN films and nanofibers. Polym Degrad Stabil 123:178–188

    Article  CAS  Google Scholar 

  4. Epifani M, Giannini C, Tapfer L, Vasanelli L (2004) Sol-gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films. J Am Ceram Soc 83(10):2385–2393

    Article  Google Scholar 

  5. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  PubMed  Google Scholar 

  6. Gaillet S, Rouanet J-M (2015) Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms—a review. Food Chem Toxicol 77:58–63

    Article  CAS  PubMed  Google Scholar 

  7. Greulich C, Braun D, Peetsch A, Diendorf J, Siebers B, Epple M, Köller M (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2(17):6981–6987

    Article  CAS  Google Scholar 

  8. Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B 74(1):328–335

    Article  CAS  Google Scholar 

  9. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed-Nanotechnol 8(1):37–45

    Article  CAS  Google Scholar 

  10. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M et al (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 66(6):2627–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hogstrand C, Galvez F, Wood CM (1996) Toxicity, silver accumulation and metallothionein induction in freshwater rainbow trout during exposure to different silver salts. Environ Toxicol Chem 15(7):1102–1108

    Article  CAS  Google Scholar 

  12. Jiang Z-J, Liu C-Y, Sun L-W (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109(5):1730–1735

    Article  CAS  PubMed  Google Scholar 

  13. Kim B-S, Kim I-S (2011) Recent nanofiber technologies. Polym Rev 51(3):235–238

    Article  CAS  Google Scholar 

  14. Lee K-H, Ohsawa O, Watanabe K, Kim I-S, Givens SR, Chase B, Rabolt JF (2009) Electrospinning of syndiotactic polypropylene from a polymer solution at ambient temperatures. Macromolecules 42(14):5215–5218

    Article  CAS  Google Scholar 

  15. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  PubMed  Google Scholar 

  16. Li W-R, Sun T-L, Zhou S-L, Ma Y-K, Shi Q-S, Xie X-B, Huang X-M (2017) A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int Biodeterior Biodegrad 123:304–310

    Article  CAS  Google Scholar 

  17. Lu DR, Abu-Izza K, Mao F (1996) Nonlinear data fitting for controlled release devices: an integrated computer program. Int J Pharm 129(1):243–251

    Article  CAS  Google Scholar 

  18. Lu L, Wang H, Zhou Y, Xi S, Zhang H, Hu J, Zhao B (2002) Seed-mediated growth of large, monodisperse core–shell gold–silver nanoparticles with Ag-like optical properties. Chem Commun 2:144–145

    Article  Google Scholar 

  19. Lu W, Liao F, Luo Y, Chang G, Sun X (2011) Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection. Electrochim Acta 56(5):2295–2298

    Article  CAS  Google Scholar 

  20. Nataraj SK, Yang KS, Aminabhavi TM (2012) Polyacrylonitrile-based nanofibers—a state-of-the-art review. Prog Polym Sci 37(3):487–513

    Article  CAS  Google Scholar 

  21. Pant B, Pant HR, Pandeya DR, Panthi G, Nam KT, Hong ST, Kim CS, Kim HY (2012) Characterization and antibacterial properties of Ag NPs loaded nylon-6 nanocomposite prepared by one-step electrospinning process. Colloid Surf A Physicochem Eng ASP 395:94–99

    Article  CAS  Google Scholar 

  22. Pant B, Park M, Park S-J (2019) One-step synthesis of silver nanoparticles embedded polyurethane nano-fiber/net structured membrane as an effective antibacterial medium. Polymers 11(7):1185

    Article  CAS  PubMed Central  Google Scholar 

  23. Pazos-Ortiz E, Roque-Ruiz JH, Hinojos-Marquez EA et al (2017) Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J Nanomater 2017:9

    Article  Google Scholar 

  24. Phan D-N, Dorjjugder N, Khan MQ, Saito Y, Taguchi G, Lee H, Mukai Y, Kim I-S (2019) Synthesis and attachment of silver and copper nanoparticles on cellulose nanofibers and comparative antibacterial study. Cellulose 26(11):6629–6640

    Article  CAS  Google Scholar 

  25. Phan D-N, Dorjjugder N, Saito Y, Taguchi G, Lee H, Lee JS, Kim I-S (2019) The mechanistic actions of different silver species at the surfaces of polyacrylonitrile nanofibers regarding antibacterial activities. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2019.100622

    Article  Google Scholar 

  26. Phan D-N, Lee H, Huang B, Mukai Y, Kim I-S (2019) Fabrication of electrospun chitosan/cellulose nanofibers having adsorption property with enhanced mechanical property. Cellulose 26(3):1781–1793

    Article  CAS  Google Scholar 

  27. Rogachev AA, Yarmolenko MA, Rogachou AV, Tapalski DV, Liu X, Gorbachev DL (2013) Morphology and structure of antibacterial nanocomposite organic–polymer and metal–polymer coatings deposited from active gas phase. RSC Adv 3(28):11226–11233

    Article  CAS  Google Scholar 

  28. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis 17(1):7–15

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shi Y, Li Y, Zhang J, Yu Z, Yang D (2015) Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction. Mater Sci Eng C 51:346–355

    Article  CAS  Google Scholar 

  30. Wang W, Li W, Gao C, Tian W, Sun B, Yu D (2015) A novel preparation of silver-plated polyacrylonitrile fibers functionalized with antibacterial and electromagnetic shielding properties. Appl Surf Sci 342:120–126

    Article  CAS  Google Scholar 

  31. Watanabe K, Kim B-S, Kim I-S (2011) Development of polypropylene nanofiber production system. Polym Rev 51(3):288–308

    Article  CAS  Google Scholar 

  32. Xiu Z-M, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008

    Article  CAS  PubMed  Google Scholar 

  33. Xu J, Han X, Liu H, Hu Y (2006) Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloid Surf A Physicochem Eng ASP 273(1):179–183

    Article  CAS  Google Scholar 

  34. Yoon K-Y, Hoon Byeon J, Park J-H, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2):572–575

    Article  CAS  PubMed  Google Scholar 

  35. Zhao J, Pinchuk AO, McMahon JM, Li S, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41(12):1710–1720

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to show deep gratitude to Goro Taguchi’s laboratory for assisting in all antibacterial tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ick-Soo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, DN., Dorjjugder, N., Saito, Y. et al. The synthesis of silver-nanoparticle-anchored electrospun polyacrylonitrile nanofibers and a comparison with as-spun silver/polyacrylonitrile nanocomposite membranes upon antibacterial activity. Polym. Bull. 77, 4197–4212 (2020). https://doi.org/10.1007/s00289-019-02969-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02969-8

Keywords

Navigation