Skip to main content
Log in

Fabrication of self-reactive microcapsules as color visual sensing for damage reporting

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The visual sensor of microcapsule has attracted great interest because of its application in damage reporting. In this work, a self-reactive microcapsule was designed that can report the damage via a color development. The results of Fourier transform infrared spectroscopy showed that the indicator dye was successfully encapsulated in the polymer shell adhered with surface activator. When the self-reactive microcapsules were damaged, the color of microcapsules turned into blue to highlight the damaged spot. The visual microcapsules were successfully applied for reporting the damage of shearing, pressuring and stretching in the polymer film, which illustrates the potential of proposed visual microcapsules for the surface damage reporting as a visual sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Han KK, Golparvar-Fard M (2017) Potential of big visual data and building information modeling for construction performance analytics: an exploratory study. Autom Constr 73:184–198

    Article  Google Scholar 

  2. Linderman LE, Spencer BF (2016) Decentralized active control of multistory civil structure with wireless smart sensor nodes. J Eng Mech 142:04016078

    Article  Google Scholar 

  3. Patrick JF, Robb MJ, Sottos NR, Moore JS, White SR (2016) Polymers with autonomous life-cycle control. Nature 540:363–370

    Article  CAS  Google Scholar 

  4. Zheng X, Wang Q, Li Y, Luan J, Wang N (2020) Microcapsule-based visualization smart sensors for damage detection: principles and applications. Adv Mater Technol 5:1900832

    Article  CAS  Google Scholar 

  5. Rifaie-Graham O, Apebende EA, Bast LK, Bruns N (2018) Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damage. Adv Mater 30:1705483

    Article  Google Scholar 

  6. Zheng X, Wang Q, Luan J, Li Y, Wang N, Zhang R (2019) Angle-dependent structural colors in a nanoscale-grating photonic crystal fabricated by reverse nanoimprint technology. Beilstein J Nanotechnol 10:1211–1216

    Article  CAS  Google Scholar 

  7. Shchukin DG, Mohwald H (2011) Smart nanocontainers as depot media for feedback active coatings. Chem Commun 47:8730–8739

    Article  CAS  Google Scholar 

  8. Zhang R, Wang Q, Zheng X (2018) Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties. J Mater Chem C 6:3182–3199

    Article  CAS  Google Scholar 

  9. Credico BD, Griffini G, Levi M, Turri S (2013) Microencapsulation of a UV-responsive photochromic dye by meansof novel UV-screening polyurea-based shells for smart coating applications. ACS Appl Mater Interfaces 14:6628–6634

    Article  Google Scholar 

  10. Kahlmeyer M, Winkel A, Scheel J, Melnyk I, Müller A, Fery A, Ricoeur A, Böhm S (2018) Microencapsulated markers for damage detection in adhesive joints. J Adhes 94:767–783

    Article  CAS  Google Scholar 

  11. Odom SA, Jackson AC, Prokup AM, Chayanupatkul S, Sottos NR, White SR, Moore JS (2011) ACS Appl Mater Interfaces 12:4547–4551

    Article  Google Scholar 

  12. Esser-Kahn AP, Odom SA, Sottos NR, White SR, Moore JS (2011) Triggered release from polymer capsules. Macromolecules 44:5539–5553

    Article  CAS  Google Scholar 

  13. Maia F, Tedim J, Bastos AC, Ferreira MGS, Zheludkevich ML (2014) Active sensing coating for early detection of corrosion processes. RSC Adv 4:17780–17786

    Article  CAS  Google Scholar 

  14. Song YK, Lee KH, Kim DM, Chung CM (2016) A microcapsule-type fluorescent probe for the detection of microcracks in cementitious materials. Sens Actuat B Chem 222:1159–1165

    Article  CAS  Google Scholar 

  15. Marturano V, Cerruti P, Giamberini M, Tylkowski B, Ambrogi V (2017) Light-responsive polymer micro- and nano-capsules Polymers 9:8

    Google Scholar 

  16. Huang Y, Dong R, Zhu X, Yan D (2014) Photo-responsive polymeric micelles. Soft Matter 10:6121–6138

    Article  CAS  Google Scholar 

  17. Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54

    Article  CAS  Google Scholar 

  18. Kurapati R, Raichur AM (2013) Near-infrared light-responsive graphene oxide composite multilayer capsules: a novel route for remote controlled drug delivery. Chem Commun 49:734–736

    Article  CAS  Google Scholar 

  19. Cui ZK, Phoeung T, Rousseau PA, Rydzek G, Zhang Q, Bazuin CG, Lafleur M (2014) Nonphospholipid fluid liposomes with switchable photocontrolled release. Langmuir 30:10818–10825

    Article  CAS  Google Scholar 

  20. Robb MJ, Li W, Gergely RC, Matthews CC, White SR, Sottos NR, Moore JS (2016) A robust damage-reporting strategy for polymeric materials enabled by aggregation-induced emission. ACS Cent Sci 2:598–603

    Article  CAS  Google Scholar 

  21. Achilleos DS, Hatton TA, Vamvakaki M (2012) Light-regulated supramolecular engineering of polymeric nanocapsules. J Am Chem Soc 134:5726–5729

    Article  CAS  Google Scholar 

  22. Yi Q, Sukhorukov GB (2013) Photolysis triggered sealing of multilayer capsules to entrap small molecules. ACS Appl Mater Interfaces 5:6723–6731

    Article  CAS  Google Scholar 

  23. Li H, Tong W, Gao C (2016) Photo-responsive polyethyleneimine microcapsules cross-linked by ortho-nitrobenzyl derivatives. J Colloid Interface Sci 463:22–28

    Article  CAS  Google Scholar 

  24. Yi Q, Sukhorukov GB (2014) UV-induced disruption of microcapsules with azobenzene groups. Soft Matter 10:1384–1391

    Article  CAS  Google Scholar 

  25. Dohler D, Rana S, Rupp H, Bergmann H, Behzadi S, Crespy D, Binder WH (2016) Qualitative sensing of mechanical damage by a fluorogenic "click" reaction. Chem Commun 52:11076–11079

    Article  Google Scholar 

  26. Li W, Matthews CC, Yang K, Odarczenko MT, White SR, Sottos NR (2016) Autonomous indication of mechanical damage in polymeric coatings. Adv Mater 28:2189–2194

    Article  CAS  Google Scholar 

  27. Lavrenova A, Farkas J, Weder C, Simon YC (2015) Visualization of polymer deformation using microcapsules filled with charge-transfer complex precursors. ACS Appl Mater Interfaces 7:21828–21834

    Article  CAS  Google Scholar 

  28. Li Y, Wang Q, Zheng X, Li Y, Luan J (2020) Microcapsule encapsulated with leuco dye as a visual sensor for concrete damage indication via color variation. RSC Adv 10:1226–1231

    Article  CAS  Google Scholar 

  29. Tang S, Yourdkhani M, Casey CMP, Sottos NR, White SR, Moore JS (2017) Low ceiling temperature polymer microcapsules with hydrophobic payloads via rapid emulsion-solvent evaporation. ACS Appl Mater Interfaces 9:20115–20123

    Article  CAS  Google Scholar 

  30. Jamekhorshid A, Sadrameli SM, Farid M (2014) A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 31:531–542

    Article  CAS  Google Scholar 

  31. Zheng X, Wang Q, Luan J, Li Y, Wang N (2019) Patterned metal/polymer strain sensor with good flexibility, mechanical stability and repeatability for human motion detection. Micromachines 10:472

    Article  Google Scholar 

  32. MacLaren DC, White MA (2003) Dye–developer interactions in the crystal violet lactone–lauryl gallate binary system: implications for thermochromism. J Mater Chem 13:1695–1700

    Article  CAS  Google Scholar 

  33. Panák O, Držková M, Kaplanová M, Novak U, Gunde MK (2017) The relation between colour and structural changes in thermochromic systems comprising crystal violet lactone, bisphenol A, and tetradecanol. Dyes Pigment 136:382–389

    Article  Google Scholar 

  34. Cheng W, Nie J, Xu L, Liang C, Peng Y, Liu G, Wang T, Mei L, Huang L, Zeng X (2017) pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interfaces 9:18462–18473

    Article  CAS  Google Scholar 

  35. Chapa-González C, Piñón-Urbina AL, García-Casillas PE (2018) Synthesis of controlled-size silica nanoparticles from sodium metasilicate and the effect of the addition of peg in the size distribution. Materials 11:510

    Article  Google Scholar 

  36. Zhang W, Ji X, Zeng C, Chen K, Yin Y, Wang C (2017) A new approach for the preparation of durable and reversible color changing polyester fabrics using thermochromic leuco dye-loaded silica nanocapsules. J Mater Chem C 5:8169–8178

    Article  CAS  Google Scholar 

  37. Chaudhury MK, Finlay JA, Chung JY, Callow ME, Callow JA (2005) The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorpha linza) from poly(dimethylsiloxane) (PDMS) model networks. Biofouling 21:41–48

    Article  CAS  Google Scholar 

  38. Hu H, Li S, Ying C, Zhang R, Li Y, Qian W, Zheng L, Fu X, Liu Q, Hu S, Wong CP (2020) Hydrophilic PDMS with a sandwich-like structure and no loss of mechanical properties and optical transparency. Appl Surf Sci 503:144126

    Article  Google Scholar 

  39. Thiagarajan G, Begonia MT, Dallas M, Lara-Castillo N, Scott JM, Johnson ML (2018) Determination of elastic modulus in mouse bones using a nondestructive micro-indentation technique using reference point indentation. J Biomech Eng 140:071011

    Article  Google Scholar 

  40. Chladek G, Pakieła K, Pakieła W, Żmudzki J, Adamiak M, Krawczyk C (2019) Effect of antibacterial silver-releasing filler on the physicochemical properties of poly(methyl methacrylate) denture base material. Materials 12:4146

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Taishan Scholar Project of Shandong Province (No. TSHW20130956) and Natural Science Foundation of Shandong Province, China (No. ZR2017MA013).

Author information

Authors and Affiliations

Authors

Contributions

XZ, YL, SX and YL conducted the experiments and data analysis under the advice of QW; XZ and QW wrote the manuscript.

Corresponding author

Correspondence to Qing Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Wang, Q., Li, Y. et al. Fabrication of self-reactive microcapsules as color visual sensing for damage reporting. J Mater Sci 55, 8861–8867 (2020). https://doi.org/10.1007/s10853-020-04668-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04668-6

Navigation