Skip to main content
Log in

Structural and electrical characterization of hydrothermally deposited piezoelectric (K,Na)(Nb,Ta)O3 thick films

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

(K0.89Na0.11)(Nb0.85Ta0.15)O3 thick films were epitaxially grown at 200 °C on (001)La:SrTiO3 and (001)cSrRuO3//(001)SrTiO3 substrates by hydrothermal method, and their crystal structures and electrical properties were investigated. Film thickness increased with deposition time and reached 6 µm in 10 h. High-temperature X-ray diffraction measurement showed that successive phase transitions from orthorhombic to tetragonal and from tetragonal to cubic phases take place at 120 and 400 °C, respectively. Microstructure analyses were performed by using electron microscopy, which revealed the existence of two types of stripe patterns with a width of 100 nm or less. In addition, scanning transmission electron microscopy–energy-dispersive X-ray spectroscopy elemental mapping showed that Nb/(Nb + Ta) ratio of the deposited films abruptly changed around 700 nm in thickness. Annealing at 500 °C led to the reduction in leakage current density from 102 to 10–5 A/cm2 at 30 kV/cm, showing that annealing is an effective way to improve insulation. Relative dielectric constant (εr) decreased linearly with increasing frequency, reaching 450 at 10 kHz. Polarization–electric field hysteresis loop and field-induced stain curve were measured by piezoelectric force microscopy, which showed remanent polarization (Pr) of 30 µC/cm2 and piezoelectric constant (d33,PFM) of 70 pm/V. These results demonstrate that (K,Na)(Nb,Ta)O3 thick films with superior electrical properties can be fabricated by the low-temperature deposition technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Maenaka K (2016) Sensors in network (5)—future sensor systems in internet of things or trillion sensor universe—. Sens Mater 28:1247–1254

    Google Scholar 

  2. Jeong CK, Han JH, Palneedi H et al (2017) Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater 5:074102

    Article  CAS  Google Scholar 

  3. Won SS, Seo H, Kawahara M et al (2019) Flexible vibrational energy harvesting devices using strain-engineeredperovskite piezoelectric thin films. Nano Energy 55:182–192

    Article  CAS  Google Scholar 

  4. Kanno I (2018) Piezoelectric MEMS: ferroelectric thin films for MEMS applications. Jpn J Appl Phys 57:040101

    Article  Google Scholar 

  5. Panda PK, Sahoo B (2015) PZT to lead free Piezo ceramics: a review. Ferroelectrics 474:128–143

    Article  CAS  Google Scholar 

  6. Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19:111–124

    Article  CAS  Google Scholar 

  7. Zheng T, Wu J, Xiao D, Zhu J (2018) Recent development in lead-free perovskite piezoelectric bulk materials. Prog Mater Sci 98:552–624

    Article  CAS  Google Scholar 

  8. Hindrichsen CG, Møller RL, Hansen K, Thomsen EV (2010) Advantages of PZT thickfilm for MEMS sensors. Sens Actuat A Phys 163:9–14

    Article  CAS  Google Scholar 

  9. Fujii E, Takayama R, Nomura K et al (2007) Preparation of (001)-oriented Pb(Zr, Ti)O3 thin films and their piezoelectric applications. IEEE Trans Ultrason Ferroelectr Freq Control 54:2431–2437

    Article  Google Scholar 

  10. Wu J, Xiao D, Zhu J (2015) Potassium−sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115:2559–2595

    Article  CAS  Google Scholar 

  11. Baker DW, Thomas PA, Zhang N, Glazer M (2009) Structural study of KxNa1-xNbO3 (KNN) for compositions in the range x = 0.24–0.36. Acta Cryst B 65:22–28

    Article  CAS  Google Scholar 

  12. Ishizawa N, Wang J, Sakakura T, Inagaki Y, Kakimoto K (2010) Structural evolution of Na0.5K0.5NbO3 at high temperatures. J Solid State Chem 183:2731–2738

    Article  CAS  Google Scholar 

  13. Li JF, Wang K, Zhu FY, Cheng LQ, Yao FZ (2013) (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96:3677–3696

    Article  CAS  Google Scholar 

  14. Zhang Y, Li JF (2019) Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. J Mater Chem C 7:4284–4303

    Article  Google Scholar 

  15. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87

    Article  CAS  Google Scholar 

  16. Xing J, Zheng T, Wu J, Xiao D, Zhu J (2018) Progress on the doping and phase boundary design of potassium–sodium niobate lead-free ceramics. J Adv Dielectr 8:1830003

    Article  CAS  Google Scholar 

  17. Flückiger U, Arend H (1978) On the preparation of pure, doped and reduced KNbO3 single crystals. J Cryst Growth 43:406–416

    Article  Google Scholar 

  18. Hicks WT (1963) Evaluation of vapor-pressure data for mercury, lithium, sodium, and potassium. J Chem Phys 38:1873–1880

    Article  CAS  Google Scholar 

  19. Athayde DD, Souza DF, Silva AMA, Vasconcelos D, Nunes EHM, Costa JCD, Vasconcelos WL (2016) Review of perovskite ceramic synthesis and membrane preparation methods. Ceram Int 42:6555–6571

    Article  CAS  Google Scholar 

  20. Huang A, Handoko AD, Goh GKL, Pallathadka PK, Shannigrahi S (2010) Hydrothermal synthesis of (00l) epitaxial BiFeO3 films on SrTiO3 substrate. CrystEngComm 12:3806–3814

    Article  CAS  Google Scholar 

  21. Morita T, Wagatsuma Y, Morioka H, Funakubo H, Setter N, Cho Y (2004) Ferroelectric property of an epitaxial PZT thin film deposited by a hydrothermal method. J Mater Res 19:1862–1868

    Article  CAS  Google Scholar 

  22. Wang D, Yang JO, Guo W, Yang X, Zhu B (2017) Novel fabrication of PZT thick films by an oil-bath based hydrothermal method. Ceram Int 43:9573–9576

    Article  CAS  Google Scholar 

  23. Li L, Miao L, Zhang Z, Pu X, Feng Q, Yanagisawa K, Fan Y, Fan M, Wen P, Hu D (2019) Recent progress in piezoelectric thin film fabrication via the solvothermal process. J Mater Chem A 7:16046–16067

    Article  CAS  Google Scholar 

  24. Tu S, Ming F, Zhang J, Zhang X, Alshareef HN (2019) MXene-derived ferroelectric crystals. Adv Mater 31:1806860

    Article  CAS  Google Scholar 

  25. Shiraishi T, Kaneko N, Ishikawa M, Kurosawa M, Uchida H, Funakubo H (2014) Ferroelectric and piezoelectric properties of KNbO3 films deposited on flexible organic substrate by hydrothermal method. Jpn J Appl Phys 53:09PA10

    Article  CAS  Google Scholar 

  26. Kaneko N, Shiraishi T, Kurosawa M, Shimizu T, Funakubo H (2014) Low temperature preparation of KNbO3 films by hydrothermal method and their characterization. Mater Res Symp Proc 1659:49–54

    Article  CAS  Google Scholar 

  27. Shiraishi T, Einishi H, Yasui S et al (2011) Growth of epitaxial {100}-oriented KNbO3–NaNbO3 solid solution films on (100)cSrRuO3//(100)SrTiO3 by hydrothermal method and their characterization. Jpn J Appl Phys 50:09ND11

    Article  Google Scholar 

  28. Shibata K, Oka F, Ohishi A, Mishima T, Kanno I (2008) Piezoelectric properties of (K, Na)NbO3 films deposited by RF magnetron sputtering. Appl Phys Express 1:011501

    Article  CAS  Google Scholar 

  29. Yu Q, Li JF, Sun W, Zhou Z, Xu Y, Xie ZK, Lai FP, Wang QM (2013) Electrical properties of K0.5Na0.5NbO3 thin films grown on Nb:SrTiO3 single-crystalline substrates with different crystallographic orientations. J Appl Phys 113:024101

    Article  CAS  Google Scholar 

  30. Nguyen MD, Dekkers M, Houwman EP, Vu HT, Vu HN, Rijnders G (2016) Lead-free (K0.5Na0.5)NbO3 thin films by pulsed laser deposition driving MEMS-based piezoelectric cantilevers. Mater Lett 164:413–416

    Article  CAS  Google Scholar 

  31. Tateyama A, Ito Y, Nakamura Y et al (2019) Effects of starting materials on the deposition behavior of hydrothermally synthesized {100}c-oriented epitaxial (K, Na)NbO3 thick films and their ferroelectric and piezoelectric properties. J Cryst Growth 511:1–7

    Article  CAS  Google Scholar 

  32. Shiraishi T, Ito Y, Ishikawa M, Uchida H, Kiguchi T, Kurosawa MK, Funakubo H, Konno TJ (2018) Preparation of {001}c-oriented epitaxial (K, Na)NbO3 thick films by repeated hydrothermal deposition technique. J Ceram Soc Jpn 126:281–285

    Article  CAS  Google Scholar 

  33. Shiraishi T, Muto Y, Ito Y, Tateyama A, Uchida H, Kiguchi T, Kurosawa MK, Funakubo H, Konno TJ (2019) Low-temperature deposition of Li substituted (K, Na)NbO3 films by a hydrothermal method and their structural and ferroelectric properties. J Ceram Soc Jpn 127:388–393

    Article  CAS  Google Scholar 

  34. Sung YS, Lee JH, Kim SW et al (2012) Enhanced piezoelectric properties of (Na0.53K0.47)(Nb1-xTax)O3 ceramics by Ta substitution. Ceram Int 38S:S301–S304

    Article  CAS  Google Scholar 

  35. Muto Y, Shiraishi T, Ito Y, Tateyama A, Uchida H, Kiguchi T, Funakubo H, Konno TJ (2019) Effect of Ta-substitution on the deposition of (K, Na)(Nb, Ta)O3 films by hydrothermal method. Jpn J Appl Phys 58:SLLB12

    CAS  Google Scholar 

  36. Handoko AD, Goh GKL (2013) Hydrothermal growth of piezoelectrically active leadfree (Na, K)NbO3–LiTaO3 thin films. CrystEngComm 15:672–678

    Article  CAS  Google Scholar 

  37. Fujita H, Tabata T, Yoshida K, Sumida N, Katagiri S (1972) Some applications of an ultra-high voltage electron microscope on materials science. Jpn J Appl Phys 11:1522–1536

    Article  CAS  Google Scholar 

  38. Baker DW, Thomas PA, Zhang N, Glazer AM (2009) A comprehensive study of the phase diagram of KxNa1−xNbO3. Appl Phys Lett 95:091903

    Article  CAS  Google Scholar 

  39. Shiraishi T, Kaneko N, Einishi H et al (2013) Crystal structure analysis of hydrothermally synthesized epitaxial (KxNa1-x)NbO3 films. Jpn J Appl Phys 52:09KA11

    Article  CAS  Google Scholar 

  40. Ishikawa M, Yazawa K, Fujisawa T, Yasui S, Yamada T, Hasegawa T, Morita T, Kurosawa M, Funakubo H (2009) Growth of epitaxial KNbO3 thick films by hydrothermal method and their characterization. Jpn J Appl Phys 48:09KA14

    Google Scholar 

  41. Ishikawa M, Einishi H, Nakajima M, Hasegawa T, Morita T, Kurosawa M, Saijo Y, Kurosawa M, Funakubo H (2010) Effect of deposition time on film thickness and their properties for hydrothermally-grown epitaxial KNbO3 thick films. Jpn J Appl Phys 49:07HF01

    Google Scholar 

  42. Ito Y, Tateyama A, Nakamura Y, Shimizu T, Kurosawa M, Uchida H, Shiraishi T, Kiguchi T, Konno TJ, Ishikawa M, Funakubo H (2019) Growth of epitaxial (K, Na)NbO3 films with various orientations by hydrothermal method and their properties. Jpn J Appl Phys 58:SLLB4

    Google Scholar 

  43. Chien AT, Xu X, Kim JH, Sachleben J, Speck JS, Lange FF (1999) Electrical characterization of BaTiO3 heteroepitaxial thin films by hydrothermal synthesis. J Mater Res 14:3330–3339

    Article  CAS  Google Scholar 

  44. Handoko AD, Goh GKL, Chew RX (2012) Piezoelectrically active hydrothermal KNbO3 thin films. CrystEngComm 14:421–427

    Article  CAS  Google Scholar 

  45. Shiraishi T, Kaneko N, Kurosawa M, Uchida H, Hirayama T, Funakubo H (2014) Effects of heat treatment on electrical and electromechanical properties of hydrothermally synthesized epitaxial (K0.51Na0.49)NbO3 films. Jpn J Appl Phys 53:05FE02

    Article  CAS  Google Scholar 

  46. Shiraishi T, Ishikawa M, Uchida H, Kiguchi T, Kurosawa MK, Funakubo H, Konno TJ (2017) Characterization of (111)-oriented epitaxial (K0.5Na0.5)NbO3 thick films deposited by hydrothermal method. Jpn J Appl Phys 56:10PF04

    Article  Google Scholar 

  47. Shiraishi T, Einishi H, Yasui S et al (2013) Composition dependency of crystal structure, electrical and piezoelectric properties for hydrothermally-synthesized 3 μm-thickness (KxNa1−x)NbO3 films. J Ceram Soc Jpn 121:627–631

    Article  CAS  Google Scholar 

  48. Zhou HM, Yi DQ, Zhang Y, Zheng SL (2005) The dissolution behavior of Nb2O5, Ta2O5 and their mixture in highly concentrated KOH solution. Hydrometallurgy 80:126–131

    Article  CAS  Google Scholar 

  49. Grigoriev A, Yang C, Azad MM, Causey O, Walko DA, Tinberg DS, McKinstry ST (2015) Piezoelectric and dielectric properties of Pb(Zr, Ti)O3 ferroelectric bilayers. Phys Rev B 91:104106

    Article  CAS  Google Scholar 

  50. Lupi E, Ghosh A, Saremi S, Hsu SL, Pandya S, Velarde G, Fernandez A, Ramesh R, Martin LW (2020) Large polarization and susceptibilities in artificial morphotropic phase boundary PbZr1-xTixO3 superlattices. Adv Electron Mater 6:1901395

    Article  CAS  Google Scholar 

  51. Kim DJ, Maria JP, Kingon AI, Streiffer SK (2003) Evaluation of intrinsic and extrinsic contributions to the piezoelectric properties of Pb(Zr1-xTx)O3 thin films as a function of composition. J Appl Phys 93:5568–5575

    Article  CAS  Google Scholar 

  52. Yu Q, Zhu FY, Cheng LQ, Wang K, Lia JF (2014) Determination of crystallographic orientation of lead-free piezoelectric (K, Na)NbO3 epitaxial thin films grown on SrTiO3 (100) surfaces. Appl Phys Lett 104:102902

    Article  CAS  Google Scholar 

  53. Megaw HD (1968) The thermal expansion of interatomic bonds, illustrated by experimental evidence from certain niobates. Acta Cryst A24:589–604

    Article  Google Scholar 

  54. Wang KP, Wang JY, Zhang HJ, Yu YG, Wu J, Gao WL, Boughton RI (2008) Thermal properties of cubic KTa1−xNbxO3 crystals. J Appl Phys 103:033513

    Article  CAS  Google Scholar 

  55. Shibata K, Suenaga K, Nomoto A, Mishima T (2009) Curie temperature, biaxial elastic modulus, and thermal expansion coefficient of (K, Na)NbO3 piezoelectric thin films. Jpn J Appl Phys 48:121408

    Article  CAS  Google Scholar 

  56. Herdier R, Detalle M, Jenkins D, Remiens D, Grebille D, Bouregba R (2008) The properties of epitaxial PMNT thin films grown on SrTiO3 substrates. J Cryst Growth 311:123–127

    Article  CAS  Google Scholar 

  57. Kim DM, Eom CB, Nagarajan V, Ouyang J, Ramesh R, Vaithyanathan V, Schlom DG (2006) Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates. Appl Phys Lett 88:142904

    Article  CAS  Google Scholar 

  58. Han G, Ryu J, Yoon WH, Choi JJ, Hahn BD, Park DS (2011) Effect of film thickness on the piezoelectric properties of lead zirconate titanate thick films fabricated by aerosol deposition. J Am Ceram Soc 94:1509–1513

    Article  CAS  Google Scholar 

  59. Wang L, Ren W, Yao K, Shi P, Wu X, Yao X (2012) Effects of thickness on structures and electrical properties of K0.5Na0.5NbO3 thick films derived from polyvinylpyrrolidone-modified chemical solution. Ceram Int 38S:S291–S294

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Japan Science and Technology Agency (JST) via the Adaptable and Seamless Technology Transfer Program through Target driven R&D (A-STEP) Grant Number JPMJTS1616. In addition, this work was supported by Yashima Environment Technology Foundation. A part of this work was supported by “Advanced Characterization Nanotechnology Platform, Nanotechnology Platform Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan” at the Research Center for Ultra-High Voltage Electron Microscopy (Nanotechnology Open Facilities) in Osaka University (Project number: A-17-OS-0042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahisa Shiraishi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiraishi, T., Muto, Y., Ito, Y. et al. Structural and electrical characterization of hydrothermally deposited piezoelectric (K,Na)(Nb,Ta)O3 thick films. J Mater Sci 55, 8829–8842 (2020). https://doi.org/10.1007/s10853-020-04663-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04663-x

Navigation