Skip to main content

Advertisement

Log in

Reconfigurable and tunable photo-controlled hydrogel using hydrogen bonding to drive molecule self-assembly and cross-linking

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reconfigurable micro–nanostructures have been largely used in the development of modern photocontrol technology. In this work, a dynamically adjustable hydrogel of supramolecule structures is realized by molecule self-assembly and cross-link in microscale. Calculations based on the molecule modeling systematically illuminate the assembly process and the mechanism of the dynamically adjustable micro–nanostructure. The transmittance changes of the hydrogel, which are measured in the visible-light range before and after electric heating, show outstanding light-control function. Thus, the one-step fabrication, bio-compatibility (no initiator, cross linker, or monomer residual), and agile photocontrol application demonstrate the potential of the adjustable physically bonded hydrogel in development of low-loss and integrated dynamical light-control devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wilson SJ, Hutley MC (2010) The optical properties of 'moth eye' antireflection surfaces. Opt Acta 29:993–1009. https://doi.org/10.1080/713820946

    Article  Google Scholar 

  2. Stavenga DG, Foletti S, Palasantzas G, Arikawa K (2006) Light on the moth-eye corneal nipple array of butterflies. Proc R Soc B 273:661–667. https://doi.org/10.1098/rspb.2005.3369

    Article  CAS  Google Scholar 

  3. Srinivasarao M (1999) Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem Rev 99:1935–1961. https://doi.org/10.1021/cr970080y

    Article  CAS  Google Scholar 

  4. Kinoshita SC, Yoshioka SY, Kawagoe KJ (2002) Mechanisms of structural colour in the morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc R Soc Lond B 269:1417–1421. https://doi.org/10.1098/rspb.2002.2019

    Article  Google Scholar 

  5. Boudeta A, Binet C, Mitov M, Bourgerette C, Boucher E (2000) Microstructure of variable pitch cholesteric films and its relationship with the optical properties. Eur Phys J E 2:247–253

    Article  Google Scholar 

  6. Zhu J, Yu ZF, Burkhard GF, Hsu C-M, Connor ST et al (2009) Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett 9:279–282. https://doi.org/10.1021/nl802886y

    Article  CAS  Google Scholar 

  7. Guo CF, Nayyar V, Zhang Z, Chen Y, Miao J (2012) Path-guided wrinkling of nanoscale metal films. Adv Mater 24:3010–3014. https://doi.org/10.1002/adma.201200540

    Article  CAS  Google Scholar 

  8. Lee SG, Lee DY, Lim HS, Lee DH, Lee S, Cho K (2010) Switchable transparency and wetting of elastomeric smart windows. Adv Mater 22:5013–5017. https://doi.org/10.1002/adma.201002320

    Article  CAS  Google Scholar 

  9. Solgaard O, Sandejas FSA, Bloom DM (1992) Deformable grating optical modulator. Opt Lett 17:688–690. https://doi.org/10.1364/OL.17.000688

    Article  CAS  Google Scholar 

  10. Burns DM, Bright VM (1998) Development of microelectromechanical variable blaze gratings. Sens Actuators A 64:7–15. https://doi.org/10.1364/OL.17.000688

    Article  CAS  Google Scholar 

  11. Nikolov SV, Yeh PD, Alexeev A (2005) Self-propelled microswimmer actuated by stimuli-sensitive bilayered hydrogel. ACS Macro Lett 4:84–88. https://doi.org/10.1021/mz5007014

    Article  CAS  Google Scholar 

  12. Keplinger C, Sun J-Y, Foo CC, Rothemund P, Whitesides GM, Suo Z (2013) Stretchable, transparent, ionic conductors. Science 341:984–987

    Article  CAS  Google Scholar 

  13. Oommen OP, Wang S, Kisiel M, Sloff M, Hilborn J, Varghese OP (2013) Smart design of stable extracellular matrix mimetic hydrogel: synthesis, characterization, and in vitro and in vivo evaluation for tissue engineering. Adv Funct Mater 23:1273–1280. https://doi.org/10.1002/adfm.201201698

    Article  CAS  Google Scholar 

  14. Yang S, Wang J, Tan H, Zeng F, Liu C (2012) Mechanically robust PEGDA–MSNs-OH nanocomposite hydrogel with hierarchical meso-macroporous structure for tissue engineering. Soft Matter 8:8981–8989

    Article  CAS  Google Scholar 

  15. Sakai T, Matsunaga T, Yamamoto Y et al (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384. https://doi.org/10.1021/ma800476x

    Article  CAS  Google Scholar 

  16. Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487. https://doi.org/10.1002/1521-4095(200104)13:7%3c485:AID-ADMA485%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  17. Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590

    Article  CAS  Google Scholar 

  18. Myung D, Waters D, Wiseman M, Pierre-Emile D, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657. https://doi.org/10.1002/pat.1134

    Article  CAS  Google Scholar 

  19. He C, Zheng Z, Zhao D, Liu J, Ouyang J, Wang H (2013) Tough and super-resilient hydrogels synthesized by using peroxidized polymer chains as polyfunctional initiating and cross-linking centers. Soft Matter 9:2837–2844

    Article  CAS  Google Scholar 

  20. Liu J, Chen C, He C, Zhao J, Yang X, Wang H (2012) Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano 6:8194–8202. https://doi.org/10.1021/nn302874v

    Article  CAS  Google Scholar 

  21. Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ (2000) Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33:4291–4294. https://doi.org/10.1021/ma9921347

    Article  CAS  Google Scholar 

  22. Shih H, Chien-Chi L (2002) Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry. Biomacromolecules 13:2003–2012. https://doi.org/10.1021/bm300752j

    Article  CAS  Google Scholar 

  23. Qi XL, Hu XY, Wei W, Yu H, Li JJ, Zhang JF, Dong W (2015) Investigation of salecan/poly(vinylalcohol) hydrogels repared by freeze/thaw method. Carbohyd Polym 118:60–69. https://doi.org/10.1016/j.carbpol.2014.11.021

    Article  CAS  Google Scholar 

  24. Zhang L, Zhao J, Zhu JT, Hea CC, Wang HL (2012) Anisotropic tough poly(vinyl alcohol) hydrogels. Soft Matter 8:10439–10447

    Article  CAS  Google Scholar 

  25. Owusu-Nkwantabisah S, Gillmor J, Switalski S, Mis MR, Bennett G, Moody R, Antalek B, Gutierrez R, Slater G (2017) Synergistic thermoresponsive optical properties of a composite self-healing hydrogel. Macromolecules 50:3671–3679. https://doi.org/10.1021/acs.macromol.7b00355

    Article  CAS  Google Scholar 

  26. Lawrence PG, Patil PS, Leipzig ND, Lapitsky YK (2016) Ionically cross-linked polymer networks for the multiple-month release of small molecules. ACS Appl Mater Interfaces 8:4323–4335. https://doi.org/10.1021/acs.macromol.7b00355

    Article  CAS  Google Scholar 

  27. Hu XB, Vatankhah-Varnoosfaderani M, Zhou J, Li QX, Sheiko SS (2015) Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv Mater 27:6899–6905. https://doi.org/10.1002/adma.201503724

    Article  CAS  Google Scholar 

  28. Ajayaghosh A, George SJ (2001) First phenylenevinylene based organogels: self-assembled nanostructures via cooperative hydrogen bonding and ð-stacking. J Am Chem Soc 123:5148–5149. https://doi.org/10.1021/ja005933+

    Article  CAS  Google Scholar 

  29. Song GS, Zhao ZY, Peng X, He CC, Weiss RA, Wang HL (2016) Rheological behavior of tough PVP-in Situ-PAAm hydrogels physically cross-linked by cooperative hydrogen bonding. Macromolecules 49:8265–8273

    Article  CAS  Google Scholar 

  30. Rodell CB, MacArthur Jr JW, Dorsey SM, Wade RJ, Wang LL, Woo YJ, Burdick JA (2015) Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv Funct Mater 25:636–644. https://doi.org/10.1002/adfm.201403550

    Article  CAS  Google Scholar 

  31. Tamesue S, Ohtani M, Yamada K et al (2013) Linear versus dendritic molecular binders for hydrogel network formation with clay nanosheets: studies with ABA triblock copolyethers carrying guanidinium ion. Chem Soc 135:15650–15655. https://doi.org/10.1021/ja408547g

    Article  CAS  Google Scholar 

  32. Tsuchida E, Abe K, Honma M (1976) Aggregation of polyion complexes between synthetic polyelectrolytes. Macromolecules 9:112–117

    Article  CAS  Google Scholar 

  33. Hirai T, Maruyama H, Suzuki T, Hayashi S (1992) Shape memorizing properties of a hydrogel of poly(vinyl alcohol). J Appl Polym Sci 45:1849–1855. https://doi.org/10.1002/app.1992.070451019

    Article  CAS  Google Scholar 

  34. Chen Y-N, Peng L, Liu T, Wang Y, Shi S, Wang H (2016) Poly(vinyl alcohol)-tannic acid hydrogels with excellent mechanical properties and shape memory behaviors. ACS Appl Mater Interfaces 8:27199–27206. https://doi.org/10.1021/acsami.6b08374

    Article  CAS  Google Scholar 

  35. Li G, Yan Q, Xia H, Zhao Y (2015) Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel. ACS Appl Mater Interfaces 7:12067–12073. https://doi.org/10.1021/acsami.5b02234

    Article  CAS  Google Scholar 

  36. Połowiński S (2002) Template polymerisation and co-polymerisation. Prog Polym Sci 27:537–577. https://doi.org/10.1016/S0079-6700(01)00035-1

    Article  Google Scholar 

  37. Brummelhuis NT (2015) Controlling monomer-sequence using supramolecular templates. Polym Chem 6:654–667

    Article  Google Scholar 

  38. Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479. https://doi.org/10.1021/ma9907587

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, MontgomeryJA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross J. B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 91323303, 51625504, 51705407), National Science and Technology Project (2016YFF0100700), and the National Key Scientific Instrument and Equipment Development Project (51427805). This work is partially sponsored by the Specialized Research Fund for the Doctoral Program of Higher Education (2016M600785, 2016BSHEDZZ126, and 2018T111048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhong Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2019_4315_MOESM1_ESM.docx

Figures S1 representing temperature-dependent dynamic optical properties of the PVA-glycerol hydrogel (30:70 ratio) in different waves; Figures S2 and Figures S3 representing the 3D geometries of stable structure for the 2-P-G system, along with calculated interaction energies. (DOCX 313 kb)

Movie S1 for the “Little Daisy” image switches from a “fuzzy” to a more distinct state when PVA-glycerol hydrogel is heated (AVI) (AVI 4480 kb)

Movie S2 for the brightness of LED lamps switches from high to low state when PVA-glycerol hydrogel is heated (AVI) (AVI 4709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wang, L., Dang, J. et al. Reconfigurable and tunable photo-controlled hydrogel using hydrogen bonding to drive molecule self-assembly and cross-linking. J Mater Sci 55, 14740–14750 (2020). https://doi.org/10.1007/s10853-019-04315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04315-9

Navigation