Skip to main content

Advertisement

Log in

Bioinspired composites reinforced with ordered steel fibers produced via a magnetically assisted 3D printing process

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Biological materials generally have better properties than engineered materials due to their intricate architecture, e.g., high strength-to-weight ratio, stiffness, toughness and adaptability. It has proven difficult to synthesize materials with biomimetic architecture. Recently, 3D printing techniques show great promise in bioinspired structural materials. In this paper, we propose an approach to fabricate composite materials with aligned steel fibers using a self-made 3D printer and characterized the mechanical properties of the prepared materials. To do so, we developed a DLP-based 3D printing process that can align short steel fibers in the resin matrix via magnetic assembly during the printing process. Using the developed process and raw materials, samples with ordered fibers were prepared. The mechanical properties of the printed materials, including the strength and friction, as well as morphology, were characterized. The results show that magnetically assisted scraper shear-induced 3D printing can realize the ordered arrangement of fibers. The tensile and compressive strength consistent with the direction of aligned fibers are higher than that of other directions. The friction performance perpendicular to the direction of aligned fibers is better than that of other directions. The mechanical and frictional properties of the composite contenting 5% fibers are better than that of 10% or 15%. This study provides a basis for the manufacture of biomimetic materials.

Graphic abstract

A magnet-assisted assembly 3D print technology is developed to produce steel fiber-resin composites with ordered architecture by programming the traveling paths of a magnet. To demonstrate the feasibility of the proposed method, a helicoidal ladder structure with ordered reinforced fibers is printed. Finally, the mechanical properties of printed composite materials with various patterns of aligned fibers are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wadsworth P, Nelson I, Porter DL, Raeymaekers B, Naleway SE (2020) Manufacturing bioinspired flexible materials using ultrasound directed self-assembly and 3D printing. Mater Des. https://doi.org/10.1016/j.matdes.2019.108243

    Article  Google Scholar 

  2. Bijwe J (1997) Composites as friction materials: recent developments in non-asbestos fiber reinforced friction materials: a review. Polym Compos 18:378–396. https://doi.org/10.1002/pc.10289

    Article  CAS  Google Scholar 

  3. Tsukizoe T, Ohmae N (1983) Friction and wear of advanced composite materials. Fibre Sci Technol 18:265–286. https://doi.org/10.1016/0015-0568(83)90021-0

    Article  CAS  Google Scholar 

  4. Kayali O (2016) In Khatib JM (ed) Sustainability of construction materials (2nd edn). Woodhead Publishing

  5. Naleway SE, Porter MM, McKittrick J, Meyers MA (2015) Structural design elements in biological materials: application to bioinspiration. Adv Mater 27:5455–5476. https://doi.org/10.1002/adma.201502403

    Article  CAS  Google Scholar 

  6. Liao G, Li Z, Cheng Y, et al (2017) Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling. Mater Des 139:283–292. https://doi.org/10.1016/j.matdes.2017.11.027

  7. Raabe D, Sachs C, Romano P (2005) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53:4281–4292. https://doi.org/10.1016/j.actamat.2005.05.027

    Article  CAS  Google Scholar 

  8. Spoerk M, Savandaiah C, Arbeiter F et al (2018) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Compos A Appl Sci Manuf 113:95–104. https://doi.org/10.1016/j.compositesa.2018.06.018

    Article  CAS  Google Scholar 

  9. Fratzl P, Barth FG (2009) Biomaterial systems for mechanosensing and actuation. Nature 462:442–448. https://doi.org/10.1038/nature08603

    Article  CAS  Google Scholar 

  10. Morales E, White JR (2009) Effect of ageing on the mechanical properties and the residual stress distribution of hybrid clay–glass fibre–polypropylene injection mouldings. J Mater Sci 44:4734–4742. https://doi.org/10.1007/s10853-009-3733-z

    Article  CAS  Google Scholar 

  11. Studart AR (2013) Biological and bioinspired composites with spatially tunable heterogeneous architectures. Adv Funct Mater 23:4423–4436. https://doi.org/10.1002/adfm.201300340

    Article  CAS  Google Scholar 

  12. Yaraghi NA, Guarín-Zapata N, Grunenfelder LK et al (2016) A sinusoidally architected helicoidal biocomposite. Adv Mater 28:6835–6844. https://doi.org/10.1002/adma.201600786

    Article  CAS  Google Scholar 

  13. Zhao C, Liu Q, Ren L, Song Z, Wang J (2017) 3D micromechanical study of hygroscopic coiling deformation in Pelargonium seed: from material and mechanics perspective. J Mater Sci 52:415–430. https://doi.org/10.1007/s10853-016-0341-6

    Article  CAS  Google Scholar 

  14. Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–26. https://doi.org/10.1038/nmat4089

    Article  CAS  Google Scholar 

  15. Studart AR (2013) Biological and bioinspired composites with spatially tunable heterogeneous architectures. Adv Funct Mater 23:4423–4436. https://doi.org/10.1002/adfm.201300340

  16. Grunenfelder LK, Suksangpanya N, Salinas C et al (2014) Bio-inspired impact-resistant composites. Acta Biomater 10:3997–4008. https://doi.org/10.1016/j.actbio.2014.03.022

    Article  CAS  Google Scholar 

  17. Roy M, Tran P, Dickens T, Schrand A (2019) Composite reinforcement architectures: a review of field-assisted additive manufacturing for polymers. J Compos Sci 4:1-25. https://doi.org/10.3390/jcs4010001

    Article  Google Scholar 

  18. Sang L, Han S, Peng X, Jian X, Wang J (2019) Development of 3D-printed basalt fiber reinforced thermoplastic honeycombs with enhanced compressive mechanical properties. Compo Part A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2019.105518

    Article  Google Scholar 

  19. Somireddy M, Singh CV, Czekanski A (2020) Mechanical behaviour of 3D printed composite parts with short carbon fiber reinforcements. Eng Fail Anal 107:104232-1–104232-13. https://doi.org/10.1016/j.engfailanal.2019.104232

    Article  CAS  Google Scholar 

  20. Thibaut C, Denneulin A, du Roscoat SR, Beneventi D, Orgeas L, Chaussy D (2019) A fibrous cellulose paste formulation to manufacture structural parts using 3D printing by extrusion. Carbohyd Polym 212:119–128. https://doi.org/10.1016/j.carbpol.2019.01.076

    Article  CAS  Google Scholar 

  21. Yang Y, Chen Z, Song X et al (2017) Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv Mater 29:1605750-1–1605750-8. https://doi.org/10.1002/adma.201605750

    Article  CAS  Google Scholar 

  22. Yang Y, Li X, Chu M et al (2019) Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Sci Adv 5:eaau9490-1–9490-10. https://doi.org/10.1126/sciadv.aau9490

    Article  CAS  Google Scholar 

  23. Kokkinis D, Schaffner M, Studart AR (2015) Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 6:1–10. https://doi.org/10.1038/ncomms9643

    Article  CAS  Google Scholar 

  24. Martin JJ, Fiore BE, Erb RM (2015) Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun 6:1–7. https://doi.org/10.1038/ncomms9641

    Article  CAS  Google Scholar 

  25. Greenhall J, Raeymaekers B (2017) 3D printing macroscale engineered materials using ultrasound directed self–assembly and stereolithography. Adv Mater Technol 2:1700122-1–1700122-7. https://doi.org/10.1002/admt.201700122

    Article  CAS  Google Scholar 

  26. Christ S, Schnabel M, Vorndran E, Groll J, Gbureck U (2015) Fiber reinforcement during 3D printing. Mater Lett 139:165–168. https://doi.org/10.1016/j.matlet.2014.10.065

    Article  CAS  Google Scholar 

  27. Compton BG, Lewis JA (2014) 3D: printing of lightweight cellular composites. Adv Mater 26:5930–5935. https://doi.org/10.1002/adma.201401804

    Article  CAS  Google Scholar 

  28. Panda B, Chandra Paul S, Jen Tan M (2017) Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett 209:146–149. https://doi.org/10.1016/j.matlet.2017.07.123

    Article  CAS  Google Scholar 

  29. Tekinalp HL, Kunc V, Velez-Garcia GM et al (2014) Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos Sci Technol 105:144–150. https://doi.org/10.1016/j.compscitech.2014.10.009

    Article  CAS  Google Scholar 

  30. Lewicki JP, Rodriguez JN, Zhu C et al (2017) 3D-printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties. Sci Rep 7:43401. https://doi.org/10.1038/srep43401

    Article  Google Scholar 

  31. Galich PI, Slesarenko V, Rudykh S (2017) Shear wave propagation in finitely deformed 3D fiber-reinforced composites. Int J Solids Struct 110–111:294–304. https://doi.org/10.1016/j.ijsolstr.2016.12.007

    Article  Google Scholar 

  32. Martin J, Caunter A, Dendulk A, et al (2017) Direct-write 3D printing of composite materials with magnetically aligned discontinuous reinforcement. In: SPIE

  33. Demirörs AF, Courty D, Libanori R, Studart AR (2016) Periodically microstructured composite films made by electric- and magnetic-directed colloidal assembly. Proc Natl Acad Sci 113:4623–4628. https://doi.org/10.1073/pnas.1524736113

    Article  CAS  Google Scholar 

  34. Ren L, Li B, Song Z, Liu Q, Ren L, Zhou X (2019) 3D printing of structural gradient soft actuators by variation of bioinspired architectures. J Mater Sci 54:6542–6551. https://doi.org/10.1007/s10853-019-03344-8

    Article  CAS  Google Scholar 

  35. Kwok SW, Goh KHH, Tan ZD et al (2017) Electrically conductive filament for 3D-printed circuits and sensors. Appl Mater Today 9:167–175. https://doi.org/10.1016/j.apmt.2017.07.001

    Article  Google Scholar 

  36. Nikzad M, Masood SH, Sbarski I (2011) Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater Design 32:3448–3456. https://doi.org/10.1016/j.matdes.2011.01.056

    Article  CAS  Google Scholar 

  37. Quan Z, Larimore Z, Wu A et al (2016) Microstructural design and additive manufacturing and characterization of 3D orthogonal short carbon fiber/acrylonitrile-butadiene-styrene preform and composite. Compos Sci Technol 126:139–148. https://doi.org/10.1016/j.compscitech.2016.02.021

    Article  CAS  Google Scholar 

  38. Borruto A, Crivellone G, Marani F (1998) Influence of surface wettability on friction and wear tests. Wear 222:57–65. https://doi.org/10.1016/S0043-1648(98)00256-7

    Article  CAS  Google Scholar 

  39. Mai YW, Castino F (1984) Fracture toughness of Kevlar-epoxy composites with controlled interfacial bonding. J Mater Sci 19:1638–1655. https://doi.org/10.1007/BF00563062

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the supported by National Key Research and Development Project of China (Grant No. 2016YFD0701601) and Jilin Province Science and Technology Development Plan Item (No. 2019030s2129GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingping Liu or Xueli Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Wu, Q., Duanmu, L. et al. Bioinspired composites reinforced with ordered steel fibers produced via a magnetically assisted 3D printing process. J Mater Sci 55, 15510–15522 (2020). https://doi.org/10.1007/s10853-020-05092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05092-6

Navigation