Skip to main content
Log in

Industrial scale synthesis of few-layer graphene nanosheets (FLGNSs): an exploration of electrochemical exfoliation approach

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Industrial scale manufacturing with tunable properties of graphene nano-sheets has been a practical concern in many applications. This study focuses on, a physical electro-chemistry approach for the synthesis of few-layer graphene nano-sheets (FLGNSs) in a scalable manner. The intercalates are bias-driven anions towards the working electrode of bulk pyrolytic graphite sheet followed by their exfoliations as FLGNSs. In-situ electrochemical studies confirm a higher rate of exfoliation with an increase in the concentration of intercalates. Based on colloidal conductivity and particle size analyses, the degree of crystallinity and effect of variation in intercalates is explored. Rate of oxidation, defects, morphological variation, and number of layers with variation of intercalate concentration have been studied by XRD, Raman spectroscopy, FTIR, UV–Vis spectroscopy, XPS, and electron microscope based analyses. Cost-effectiveness of the electrochemical process in producing FLGNSs is assessed by considering cost of raw materials used in this laboratory process.

Graphic abstract

Schematics of Industrial scalable process for manufacturing FLGNSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. https://doi.org/10.1126/science.1158877

    Article  CAS  Google Scholar 

  2. Sahoo SK, Mallik A (2019) Fundamentals of fascinating graphene nanosheets: a comprehensive study. NANO 14:1930003. https://doi.org/10.1142/S1793292019300032

    Article  CAS  Google Scholar 

  3. Alonso ET, Rodrigues DP, Khetani M et al (2018) Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles. NPJ Flex Electron 2:25. https://doi.org/10.1038/s41528-018-0040-2

    Article  Google Scholar 

  4. Kim H, Ahn J-H (2017) Graphene for flexible and wearable device applications. Carbon 120:244–257. https://doi.org/10.1016/j.carbon.2017.05.041

    Article  CAS  Google Scholar 

  5. Liu S, Ou J, Wang J et al (2011) A simple two-step electrochemical synthesis of graphene sheets film on the ITO electrode as supercapacitors. J Appl Electrochem 41:881–884. https://doi.org/10.1007/s10800-011-0304-1

    Article  CAS  Google Scholar 

  6. Wang Z, Zhu Y, Jiang Y et al (2018) Graphene modified Li1.2Ni0.133Co0.133Mn0.534O2 cathode material for high capacity lithium-ion batteries. J Appl Electrochem 48:1273–1283. https://doi.org/10.1007/s10800-018-1251-x

    Article  CAS  Google Scholar 

  7. Ganash AA, Alqarni SA, Hussein MA (2019) Poly(aniline-co-o-anisidine)/graphene oxide Au nanocomposites for dopamine electrochemical sensing application. J Appl Electrochem 49:179–194. https://doi.org/10.1007/s10800-018-1260-9

    Article  CAS  Google Scholar 

  8. Pasakon P, Mensing JP, Phokaratkul D et al (2019) A high-performance, disposable screen-printed carbon electrode modified with multi-walled carbon nanotubes/graphene for ultratrace level electrochemical sensors. J Appl Electrochem 49:217–227. https://doi.org/10.1007/s10800-018-1268-1

    Article  CAS  Google Scholar 

  9. Kazemi AS, Hosseini SM, Abdi Y (2019) Large total area membrane of suspended single layer graphene for water desalination. Desalination 451:160–171. https://doi.org/10.1016/j.desal.2017.12.050

    Article  CAS  Google Scholar 

  10. Yang Y, Asiri AM, Tang Z et al (2013) Graphene based materials for biomedical applications. Mater Today 16:365–373. https://doi.org/10.1016/j.mattod.2013.09.004

    Article  CAS  Google Scholar 

  11. Shen J, He Y, Wu J et al (2015) Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett 15:5449–5454. https://doi.org/10.1021/acs.nanolett.5b01842

    Article  CAS  PubMed  Google Scholar 

  12. Blomquist N, Engström AC, Hummelgård M et al (2016) Large-scale production of nanographite by tube-shear exfoliation in water. PLoS ONE 11:e0154686. https://doi.org/10.1371/journal.pone.0154686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fang X, Shashurin A, Keidar M (2015) Role of substrate temperature at graphene synthesis in an arc discharge. J Appl Phys 118:103304. https://doi.org/10.1063/1.4930177

    Article  CAS  Google Scholar 

  14. Sahoo SK, Mallik A (2015) Simple, fast and cost-effective electrochemical synthesis of few layer graphene nanosheets. NANO 10:1550019. https://doi.org/10.1142/S1793292015500198

    Article  CAS  Google Scholar 

  15. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  16. Su C-Y, Lu A-Y, Xu Y et al (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5:2332–2339. https://doi.org/10.1021/nn200025p

    Article  CAS  PubMed  Google Scholar 

  17. Abdelkader AM, Cooper AJ, Dryfe RAW, Kinloch IA (2015) How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7:6944–6956. https://doi.org/10.1039/C4NR06942K

    Article  CAS  PubMed  Google Scholar 

  18. Parvez K, Wu Z-S, Li R et al (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091. https://doi.org/10.1021/ja5017156

    Article  CAS  PubMed  Google Scholar 

  19. Cooper AJ, Wilson NR, Kinloch IA, Dryfe RAW (2014) Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66:340–350. https://doi.org/10.1016/j.carbon.2013.09.009

    Article  CAS  Google Scholar 

  20. Liu J, Poh CK, Zhan D et al (2013) Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy 2:377–386. https://doi.org/10.1016/j.nanoen.2012.11.003

    Article  CAS  Google Scholar 

  21. Chen D, Wang F, Li Y et al (2019) Programmed electrochemical exfoliation of graphite to high quality graphene. Chem Commun 55:3379–3382. https://doi.org/10.1039/C9CC00393B

    Article  Google Scholar 

  22. Ejigu A, Miller B, Kinloch IA, Dryfe RAW (2018) Optimisation of electrolytic solvents for simultaneous electrochemical exfoliation and functionalisation of graphene with metal nanostructures. Carbon 128:257–266. https://doi.org/10.1016/j.carbon.2017.11.081

    Article  CAS  Google Scholar 

  23. Li L, Wang M, Cao M et al (2017) Regulation of radicals from electrochemical exfoliation for production of graphene and its electrochemical properties. Electrochim Acta 258:1484–1492. https://doi.org/10.1016/j.electacta.2017.12.021

    Article  CAS  Google Scholar 

  24. Zhou Q, Lu Y, Xu H (2019) High-yield production of high-quality graphene by novel electrochemical exfoliation at air-electrolyte interface. Mater Lett 235:153–156. https://doi.org/10.1016/j.matlet.2018.10.016

    Article  CAS  Google Scholar 

  25. Shinde DB, Brenker J, Easton CD et al (2016) Shear assisted electrochemical exfoliation of graphite to graphene. Langmuir 32:3552–3559. https://doi.org/10.1021/acs.langmuir.5b04209

    Article  CAS  PubMed  Google Scholar 

  26. Gewirth AA, Bard AJ (1988) In situ scanning tunneling microscopy of the anodic oxidation of highly oriented pyrolytic graphite surfaces. J Phys Chem 92:5563–5566. https://doi.org/10.1021/j100331a006

    Article  CAS  Google Scholar 

  27. Hathcock KW, Brumfield JC, Goss CA et al (1995) Incipient electrochemical oxidation of highly oriented pyrolytic graphite: correlation between surface blistering and electrolyte anion intercalation. Anal Chem 67:2201–2206. https://doi.org/10.1021/ac00109a045

    Article  CAS  Google Scholar 

  28. Hirschfelder JO, Curtiss CF, Bird RB, Mayer MG (1964) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  29. Simoes MC, Hughes KJ, Ingham DB et al (2017) Estimation of the thermochemical radii and ionic volumes of complex ions. Inorg Chem 56:7566–7573. https://doi.org/10.1021/acs.inorgchem.7b01205

    Article  CAS  PubMed  Google Scholar 

  30. Marcus Y (2012) Volumes of aqueous hydrogen and hydroxide ions at 0 to 200 °C. J Chem Phys 137:154501. https://doi.org/10.1063/1.4758071

    Article  CAS  PubMed  Google Scholar 

  31. Sahoo SK, Mallik A (2015) Synthesis and characterization of conductive few layered graphene nanosheets using an anionic electrochemical intercalation and exfoliation technique. J Mater Chem C 3:10870–10878. https://doi.org/10.1039/C5TC01893E

    Article  CAS  Google Scholar 

  32. Levi MD, Markevich E, Wang C, Aurbach D (2007) Chronoamperometric measurements and modeling of nucleation and growth, and moving boundary stages during electrochemical lithiation of graphite electrode. J Electroanal Chem 600:13–22. https://doi.org/10.1016/j.jelechem.2005.11.037

    Article  CAS  Google Scholar 

  33. Morales GM, Schifani P, Ellis G et al (2011) High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon 49:2809–2816. https://doi.org/10.1016/j.carbon.2011.03.008

    Article  CAS  Google Scholar 

  34. Beck F, Junge H, Krohn H (1981) Graphite intercalation compounds as positive electrodes in galvanic cells. Electrochim Acta 26:799–809. https://doi.org/10.1016/0013-4686(81)85038-4

    Article  CAS  Google Scholar 

  35. Beck F, Krohn H (1983) Reversible electrochemical intercalation of anions from aqueous solutions in polymer bound graphite electrodes. Synth Met 7:193–199. https://doi.org/10.1016/0379-6779(83)90047-4

    Article  CAS  Google Scholar 

  36. Besenhard JO, Wudy E, Möhwald H et al (1983) Anodic oxidation of graphite in H2SO4 dilatometry-in situ X-ray diffraction-impedance spectroscopy. Synth Met 7:185–192. https://doi.org/10.1016/0379-6779(83)90046-2

    Article  CAS  Google Scholar 

  37. Zhang J, Wang E (1995) STM investigation of HOPG superperiodic features caused by electrochemical pretreatment. J Electroanal Chem 399:83–89. https://doi.org/10.1016/0022-0728(95)04175-3

    Article  Google Scholar 

  38. Zhang B, Wang E (1995) Effects of anodic oxidation on the surface structure of highly oriented pyrolytic graphite revealed by in situ electrochemical scanning tunnelling microscopy in H2SO4 solution. Electrochim Acta 40:2627–2633. https://doi.org/10.1016/0013-4686(95)00111-Q

    Article  CAS  Google Scholar 

  39. Alanyalıoğlu M, Segura JJ, Oró-Solè J, Casañ Pastor N (2012) The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50:142–152. https://doi.org/10.1016/j.carbon.2011.07.064

    Article  CAS  Google Scholar 

  40. Chuang C-H, Su C-Y, Hsu K-T et al (2015) A green, simple and cost-effective approach to synthesize high quality graphene by electrochemical exfoliation via process optimization. RSC Adv 5:54762–54768. https://doi.org/10.1039/C5RA07710A

    Article  CAS  Google Scholar 

  41. Bose S, Kuila T, Mishra AK et al (2012) Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J Mater Chem 22:9696–9703. https://doi.org/10.1039/c2jm00011c

    Article  CAS  Google Scholar 

  42. Blanton TN, Majumdar D (2012) X-ray diffraction characterization of polymer intercalated graphite oxide. Powder Diff 27:104–107. https://doi.org/10.1017/S0885715612000292

    Article  Google Scholar 

  43. Coroş M, Pogăcean F, Roşu M-C et al (2016) Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Adv 6:2651–2661. https://doi.org/10.1039/C5RA19277C

    Article  CAS  Google Scholar 

  44. Xie R, Fan G, Ma Q et al (2014) Facile synthesis and enhanced catalytic performance of graphene-supported Ni nanocatalyst from a layered double hydroxide-based composite precursor. J Mater Chem A 2:7880–7889. https://doi.org/10.1039/c4ta00395k

    Article  CAS  Google Scholar 

  45. Iqbal MW, Singh AK, Iqbal MZ, Eom J (2012) Raman fingerprint of doping due to metal adsorbates on graphene. J physics Condens matter 24:335301. https://doi.org/10.1088/0953-8984/24/33/335301

    Article  CAS  Google Scholar 

  46. Dresselhaus MS, Jorio A, Souza Filho AG, Saito R (2010) Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos Trans R Soc A 368:5355–5377. https://doi.org/10.1098/rsta.2010.0213

    Article  CAS  Google Scholar 

  47. Srinivas G, Zhu Y, Piner R et al (2010) Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48:630–635. https://doi.org/10.1016/j.carbon.2009.10.003

    Article  CAS  Google Scholar 

  48. Lu J, Yang J, Wang J et al (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375. https://doi.org/10.1021/nn900546b

    Article  CAS  PubMed  Google Scholar 

  49. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  PubMed  Google Scholar 

  50. Koh ATT, Foong YM, Chua DHC (2012) Comparison of the mechanism of low defect few-layer graphene fabricated on different metals by pulsed laser deposition. Diam Relat Mater 25:98–102. https://doi.org/10.1016/j.diamond.2012.02.014

    Article  CAS  Google Scholar 

  51. Sadezky A, Muckenhuber H, Grothe H et al (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  52. Abdolmaleki A, Mallakpour S, Borandeh S (2016) Improving interfacial interaction of L-phenylalanine-functionalized graphene nanofiller and poly(vinyl alcohol) nanocomposites for obtaining significant membrane properties: morphology, thermal, and mechanical studies. Polym Compos 37:1924–1935. https://doi.org/10.1002/pc.23371

    Article  CAS  Google Scholar 

  53. Fu Y, Zhang J, Liu H et al (2013) Ionic liquid-assisted exfoliation of graphite oxide for simultaneous reduction and functionalization to graphenes with improved properties. J Mater Chem A 1:2663–2674. https://doi.org/10.1039/c2ta00353h

    Article  CAS  Google Scholar 

  54. Kaniyoor A, Jafri RI, Arockiadoss T, Ramaprabhu S (2009) Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1:382–386. https://doi.org/10.1039/b9nr00015a

    Article  CAS  PubMed  Google Scholar 

  55. Sudesh, Kumar N, Das S, Bernhard C, Varma GD (2013) Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond Sci Technol 26:095008. https://doi.org/10.1088/0953-2048/26/9/095008

    Article  CAS  Google Scholar 

  56. Kumar NA, Choi H-J, Shin YR et al (2012) Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6:1715–1723. https://doi.org/10.1021/nn204688c

    Article  CAS  PubMed  Google Scholar 

  57. Das M, Datta J, Dey A et al (2015) One step hydrothermal synthesis of a rGO-TiO2 nanocomposite and its application on a Schottky diode: improvement in device performance and transport properties. RSC Adv 5:101582–101592. https://doi.org/10.1039/C5RA17795B

    Article  CAS  Google Scholar 

  58. Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998. https://doi.org/10.1016/j.carbon.2008.08.013

    Article  CAS  Google Scholar 

  59. Zhou K, Zhu Y, Yang X et al (2011) Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J Chem 35:353–359. https://doi.org/10.1039/c0nj00623h

    Article  CAS  Google Scholar 

  60. Galande C, Mohite AD, Naumov AV et al (2011) Quasi-molecular fluorescence from graphene oxide. Sci Rep 1:85. https://doi.org/10.1038/srep00085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singh VV, Gupta G, Batra A et al (2012) Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application. Adv Funct Mater 22:2352–2362. https://doi.org/10.1002/adfm.201102525

    Article  CAS  Google Scholar 

  62. Singhbabu YN, Sahu KK, Dadhich D et al (2013) Capsule-embedded reduced graphene oxide: synthesis, mechanism and electrical properties. J Mater Chem C 1:958–966. https://doi.org/10.1039/C2TC00304J

    Article  CAS  Google Scholar 

  63. Kwan YCG, Ng GM, Huan CHA (2015) Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum. Thin Solid Films 590:40–48. https://doi.org/10.1016/j.tsf.2015.07.051

    Article  CAS  Google Scholar 

  64. Hsu H-C, Shown I, Wei H-Y et al (2013) Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 5:262–268. https://doi.org/10.1039/c2nr31718d

    Article  CAS  PubMed  Google Scholar 

  65. Woo S, Kim Y-R, Chung TD et al (2012) Synthesis of a graphene-carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochim Acta 59:509–514. https://doi.org/10.1016/j.electacta.2011.11.012

    Article  CAS  Google Scholar 

  66. Tu Q, Pang L, Chen Y et al (2014) Effects of surface charges of graphene oxide on neuronal outgrowth and branching. Analyst 139:105–115. https://doi.org/10.1039/c3an01796f

    Article  CAS  PubMed  Google Scholar 

  67. Huang Z-D, Zhang B, Oh S-W et al (2012) Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. J Mater Chem 22:3591–3599. https://doi.org/10.1039/c2jm15048d

    Article  CAS  Google Scholar 

  68. Kumar NA, Nolan H, McEvoy N et al (2013) Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets. J Mater Chem A 1:4431–4435. https://doi.org/10.1039/c3ta10337d

    Article  CAS  Google Scholar 

  69. Senthilnathan J, Liu Y-F, Rao KS, Yoshimura M (2014) Submerged liquid plasma for the synchronized reduction and functionalization of graphene oxide. Sci Rep 4:4395. https://doi.org/10.1038/srep04395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhong YL, Swager TM (2012) Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization. J Am Chem Soc 134:17896–17899. https://doi.org/10.1021/ja309023f

    Article  CAS  PubMed  Google Scholar 

  71. Ossonon BD, Belanger D (2017) Functionalization of graphene sheets by the diazonium chemistry during electrochemical exfoliation of graphite. Carbon 111:83–93. https://doi.org/10.1016/j.carbon.2016.09.063

    Article  CAS  Google Scholar 

  72. Chen C-H, Yang S-W, Chuang M-C et al (2015) Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation. Nanoscale 7:15362–15373. https://doi.org/10.1039/c5nr03669k

    Article  CAS  PubMed  Google Scholar 

  73. Lu X, Zhao C (2013) Controlled electrochemical intercalation, exfoliation and in situ nitrogen doping of graphite in nitrate-based protic ionic liquids. Phys Chem Chem Phys 15:20005–20009. https://doi.org/10.1039/c3cp53917b

    Article  CAS  PubMed  Google Scholar 

  74. Alliata D, Haring P, Haas O et al (1999) Anion intercalation into highly oriented pyrolytic graphite studied by electrochemical atomic force microscopy. Electrochem Commun 1:5–9

    Article  CAS  Google Scholar 

  75. Noel M, Santhanam R (1998) Electrochemistry of graphite intercalation compounds. J Power Sources 72:53–65. https://doi.org/10.1016/S0378-7753(97)02675-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SKS would like to acknowledge the Ministry of Human Resource Development, Govt. of India and National Institute of Technology Rourkela for their financial and infrastructure support during the doctoral research study. The authors also gratefully acknowledge the financial support of this work by the Science and Engineering Research Board (SERB, India) for the Grant Number EEQ/2018/001452.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sumanta Kumar Sahoo or Archana Mallik.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.K., Behera, A.K., Chandran, R. et al. Industrial scale synthesis of few-layer graphene nanosheets (FLGNSs): an exploration of electrochemical exfoliation approach. J Appl Electrochem 50, 673–688 (2020). https://doi.org/10.1007/s10800-020-01422-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01422-3

Keywords

Navigation