Skip to main content
Log in

Porous nano-hydroxyapatites doped into substrate for thin film composite forward osmosis membrane to show high performance

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The incorporation of inorganic nanoparticles into thin film composite forward osmosis (TFC FO) membranes is an effective method to alleviate internal concentration polarization (ICP) and enhance the flux performance of the FO membrane. In this paper, synthetic hydrophilic rod-like porous nano-hydroxyapatites (PNHAs) were doped into polysulfone (PSf) casting solution to form support layer by phase inversion; further interfacial polymerization was carried out to prepare a high performance TFC FO membrane. The results showed that the incorporation of PNHAs not only improved the thickness, porosity, hydrophilicity, and connectivity of the support layer, but also enhanced the roughness of the active layer. The measured mass transfer parameters prove that these improvements were beneficial. Further FO experiments showed that when using deionized water as the feed solution and 1mol/L NaCl as the draw solution, TFN 0.75 showed higher water flux than TFC FO membrane in both AL-FS (18.5 vs 7.16 L/m2·h) and AL-DS (33.26 vs 9.93 L/m2·h) modes. Reverse salt flux had not increased significantly. At the same time, TFN 0.75 (697 μm vs 1,960 μm) showed the smallest structural parameter. This study shows that PNHA is a suitable nanomaterial for mitigating the ICP effect of FO membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ai :

water permeability coefficient, i representing total membrane (T) or substrate (S), respectively [L/m2·h·bar]

Am :

effective membrane area [m2]

Bi :

salt permeability coefficient [L/m2·h]

Cf :

salt concentration of feed solution [mol/L]

Cp :

salt concentration of permeated side solution [mol/L]

Ct :

salt concentration in feed solution at different times [mol/L]

D:

solute diffusion coefficient [m2/s]

J:

pure water flux [L/m2·h]

Js :

reverse salt flux [g/m2·h]

Jw :

water flux [L/m2·h]

mdry :

weight of dry substrate [g]

mwet :

weight of wet substrate [g]

Ri :

salt rejection [%]

S:

structural parameter [μm]

Vt :

volume of feed solution at different times [mol/L]

ε :

porosity of substrate [%]

ρ w :

density of water [g/cm3]

ρ P :

density of PSf [g/cm3]

π D, b :

bulk osmosis pressure of DS [bar]

π F,m :

osmosis pressure of FS on the FO membrane surface [bar]

ΔP:

transmembrane pressure [bar]

ΔV:

increment of water permeation volume [L]

References

  1. M. Mulder, Basic principles of membrane technology, Kluwer Academic Publications, Netherlands (1996).

    Google Scholar 

  2. K.P. Lee, T.C. Arnot and D. Mattia, J. Membr. Sci., 370, 1 (2011).

    CAS  Google Scholar 

  3. S. Jiang, Y. Li and B. P. Ladewig, Sci. Total Environ., 595, 567 (2017).

    CAS  PubMed  Google Scholar 

  4. S. Zhao, L. Zhou and C.Y. Tang, J. Membr. Sci., 396, 1 (2012).

    CAS  Google Scholar 

  5. S. Lee, C. Boo and M. Elimelech, J. Membr. Sci., 365, 34 (2010).

    CAS  Google Scholar 

  6. T.Y. Cath, A.E. Childress and M. Elimelech, J. Membr. Sci., 281, 70 (2006).

    CAS  Google Scholar 

  7. D.L. Shaffer, J.R. Werber and H. Jaramillo, Desalination, 356, 271 (2015).

    CAS  Google Scholar 

  8. S. Lee, C. Boo and M. Elimelech, J. Membr. Sci., 365, 34 (2010).

    CAS  Google Scholar 

  9. A. Achilli, T.Y. Cath and E.A. Marchand, Desalination, 239, 10 (2009).

    CAS  Google Scholar 

  10. R.L. Mcginnis and M. Elimelech, Desalination, 207, 370 (2007).

    CAS  Google Scholar 

  11. N. Niksefat, M. Jahanshahi and A. Rahimpour, Desalination, 343, 140 (2014).

    CAS  Google Scholar 

  12. W. Kuang, Z. Liu and G. Kang, J. Appl. Polym. Sci., 31, 133 (2016).

    Google Scholar 

  13. G.T. Gray, J.R. Mccutcheon and M. Elimelech, Desalination, 197, 1 (2006).

    CAS  Google Scholar 

  14. S. Shokrollahzadeh and S. Tajik, Desalination, 425, 68 (2018).

    CAS  Google Scholar 

  15. L. Huang and J.R. Mccutcheon, J. Membr. Sci., 483, 25 (2015).

    CAS  Google Scholar 

  16. Y. Pan, Q. Zhao and L. Gu, Desalination, 421, 160 (2017).

    CAS  Google Scholar 

  17. A.K. Ghosh and E.M.V. Hoek, J. Membr. Sci., 336, 140 (2009).

    CAS  Google Scholar 

  18. M.J. Park, R.R. Gonzales and A. Abdel-Wahab, Desalination, 426, 50 (2018).

    CAS  Google Scholar 

  19. X. Chi, P. Zhang and X. Guo, Appl. Surf. Sci., 427, 1 (2018).

    CAS  Google Scholar 

  20. S. Lim, M.J. Park and S. Phuntsho, Polymer, 110, 36 (2017).

    CAS  Google Scholar 

  21. L. Huang, J.T. Arena and J.R. Mccutcheon, J. Membr. Sci., 499, 352 (2016).

    CAS  Google Scholar 

  22. S. Sahebi, S. Phuntsho and Y.C. Woo, Desalination, 389, 129 (2016).

    CAS  Google Scholar 

  23. H. Guo, Z. Yao and J. Wang, J. Membr. Sci., 551, 234 (2018).

    CAS  Google Scholar 

  24. H.A. Shawky, S.R. Chae and S. Lin, Desalination, 272, 46 (2011).

    CAS  Google Scholar 

  25. A. Rahimpour, M. Jahanshahi and A. Mollahosseini, Desalination, 285, 31 (2012).

    CAS  Google Scholar 

  26. W. Sun, J. Shi and C. Chen, RSC Adv., 8, 10040 (2018).

    CAS  Google Scholar 

  27. Y. Wang, R. Ou and Q. Ge, Desalination, 330, 70 (2013).

    CAS  Google Scholar 

  28. M.J. Park, S. Phuntsho and T. He, J. Membr. Sci., 493, 496 (2015).

    CAS  Google Scholar 

  29. J. Yin, E.S. Kim and J. Yang, J. Membr. Sci., 423, 238 (2012).

    Google Scholar 

  30. X. Zhang, L. Shen and C. Guan, J. Membr. Sci., 564, 328 (2018).

    CAS  Google Scholar 

  31. W. Kuang, Z. Liu and H. Yu, J. Membr. Sci., 497, 485 (2016).

    CAS  Google Scholar 

  32. Y. Wang and T. Xu, J. Membr. Sci., 476, 330 (2015).

    CAS  Google Scholar 

  33. M. Ghanbari, D. Emadzadeh and W.J. Lau, Desalination, 377, 152 (2016).

    CAS  Google Scholar 

  34. A.F. Faria, C. Liu and M. Xie, J. Membr. Sci., 525, 146 (2017).

    CAS  Google Scholar 

  35. X. Wu, R.W. Field and J. Wu, J. Membr. Sci., 540, 251 (2017).

    CAS  Google Scholar 

  36. Y. Wang, R. Ou and Q. Ge, Desalination, 330, 70 (2013).

    CAS  Google Scholar 

  37. M. Rastgar, A. Shakeri and A. Bozorg, Desalination, 421, 179 (2017).

    CAS  Google Scholar 

  38. A. Fihri, C. Len and R.S. Varma, Coord. Chem. Rev., 347, 48 (2017).

    CAS  Google Scholar 

  39. Q. Chang, K.K. Li and S.L. Hu, Mater. Lett., 175, 44 (2016).

    CAS  Google Scholar 

  40. N. Ma, J. Wei and S. Qi, J. Membr. Sci., 441, 54 (2013).

    CAS  Google Scholar 

  41. M.R. Esfahani, S.A. Aktij and Z. Dabaghian, Sep. Purif. Technol., 213, 465 (2019).

    CAS  Google Scholar 

  42. S. Morales-Torres, C.M.P. Esteves and J.L. Figueiredo, J. Membr. Sci., 520, 326 (2016).

    CAS  Google Scholar 

  43. H. Zuo, J. Fu and G. Cao, Appl. Surf. Sci., 436, 1181 (2018).

    CAS  Google Scholar 

  44. J.R. Mccutcheon and M. Elimelech, AIChE J., 53, 1736 (2007).

    CAS  Google Scholar 

  45. D. Emadzadeh, W.J. Lau and M. Rahbari-Sisakht, Chem. Eng. J., 281, 243 (2015).

    CAS  Google Scholar 

  46. P. Lu, S. Liang and T. Zhou, RSC Adv., 61, 6 (2016).

    Google Scholar 

  47. D. Emadzadeh, W.J. Lau and T. Matsuura, J. Membr. Sci., 449, 74 (2014).

    CAS  Google Scholar 

  48. M.L. Yeow, Y.T. Liu and K. Li, J. Appl. Polym. Sci., 92, 1782 (2004).

    CAS  Google Scholar 

  49. M. Rastgar, A. Bozorg and A. Shakeri, Environ. Sci. Technol., 52, 2704 (2018).

    CAS  PubMed  Google Scholar 

  50. M. Rastgar, A. Shakeri and A. Bozorg, Appl. Surf. Sci., 441, 923 (2018).

    CAS  Google Scholar 

  51. J.R. Mccutcheon, R.L. McGinnis and M. Elimelech, Desalination, 174, 1 (2005).

    CAS  Google Scholar 

  52. A. Zirehpour, A. Rahimpour and F. Seyedpour, Desalination, 371, 46 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21276132) and the Key Research and Development Program in Shandong Province (public welfare science and technology research project) (2019GSF109038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihai Duan.

Supporting Information

11814_2020_554_MOESM1_ESM.pdf

Porous nano-hydroxyapatites doped into substrate for thin film composite forward osmosis membrane to show high performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Guo, Y., Liu, M. et al. Porous nano-hydroxyapatites doped into substrate for thin film composite forward osmosis membrane to show high performance. Korean J. Chem. Eng. 37, 1573–1584 (2020). https://doi.org/10.1007/s11814-020-0554-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0554-x

Keywords

Navigation