Skip to main content

Advertisement

Log in

Fe–Mo2C: A Magnetically Recoverable Catalyst for Hydrogenation of Ethyl Levulinate Into γ-Valerolactone

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

As a renewable resource, biomass can be transformed into liquid fuels and chemicals. Hydrogenation of levulinic acid and its ester to γ-valerolactone is one of the effective way in biomass conversion. In this manuscript, the magnetically recoverable iron-doped molybdenum carbides were prepared by using ionic liquids as all-in-one precursors and characterized by XRD, XPS, TEM and H2 chemical adsorption. Due to a strong interaction between Fe and Mo2C, Fe–Mo2C-1:18, preparing by using the precursor with the metal to carbon ratio of 1:18, showed an excellent catalytic performance in the hydrogenation of ethyl levulinate, and the conversion of ethyl levulinate can achieve 100% and the selectivity of γ-valerolactone can also reach 95.9% under the optimized reaction conditions. At the same time, Fe–Mo2C-1:18 showed favorable catalytic applicability for different substrates and its catalytic activity decreased slightly after three cycles.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Escobar JC, Lora ES, Venturini OJ, Yáñez EE, Castillo EF, Almazan OJR (2009) Renew Sust Energy Rev 13:1275–1287

    CAS  Google Scholar 

  2. Liguori F, Moreno-Marrodan C, Barbaro P (2015) ACS Catal 5:1882–1894

    CAS  Google Scholar 

  3. Xie Y, Li F, Wang J, Wang R, Wang H, Liu X, Xia YM (2017) Mol Catal 442:107–114

    CAS  Google Scholar 

  4. Tang X, Zeng X, Li Z, Hu L, Sun Y, Liu S, Lei T, Lin L (2014) Sust Energ Rev 40:608–620

    CAS  Google Scholar 

  5. Yoshida R, Sun D, Yamada Y, Sato S (2018) Mol Catal 454:70–76

    CAS  Google Scholar 

  6. Alonso DM, Wettstein SG, Dumesic JA (2013) Green Chem 15:584–595

    CAS  Google Scholar 

  7. Yan K, Yang Y, Chai J, Lu Y (2015) Appl Catal B 179:292–304

    CAS  Google Scholar 

  8. Van Nguyen C, Matsagar BM, Yeh J-Y, Chiang WH, Wu KCW (2019) Mol Catal 475:110478

    Google Scholar 

  9. Kong J, Wu S, Liu L, Li S, Liu J (2017) Mol Catal 439:180–185

    CAS  Google Scholar 

  10. Kong J, Wu S, Li X, Liu J (2016) Energy Fuel 30:6500–6504

    Google Scholar 

  11. Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA (2014) Science 343:277–280

    CAS  PubMed  Google Scholar 

  12. Ndolomingo MJ, Meijboom R (2019) Catal Lett 149:2807–2822 https://doi.org/10.1007/s10562-019-02790-y

    Article  CAS  Google Scholar 

  13. Li Z, Zuo M, Jiang Y, Tang X, Zeng X, Sun Y, Lei T, Lin L (2016) Fuel 175:232–239

    CAS  Google Scholar 

  14. Yan K, Chen A (2014) Fuel 115:101–108

    CAS  Google Scholar 

  15. Zhang R, Ma Y, You F, Peng T, He Z, Li K (2017) Int J Hydrog Energy 42:25185–25194

    CAS  Google Scholar 

  16. Kong J, Wu S, Jin Y, Liu L, Liu J (2017) Energy Fuel 31:12232–12237

    CAS  Google Scholar 

  17. Hengst K, Ligthart DM, Doronkin DE, Walter KM, Kleist W, Hensen EJ, Grunwaldt JD (2017) Ind Eng Chem Res 56:2680–2689

    CAS  Google Scholar 

  18. Shimizu K, Kanno S, Kon K (2014) Green Chem 16:3899–3903

    CAS  Google Scholar 

  19. Pinto BP, Fortuna ALL, Cardoso CP, Mota CJ (2017) Catal Lett 147:751–757

    CAS  Google Scholar 

  20. Yun GN, Takagaki A, Kikuchi R, Oyama ST (2017) Catal Sci Technol 7:281–292

    CAS  Google Scholar 

  21. Li C, Xu G, Zhai Y, Liu X, Ma Y, Zhang Y (2017) Fuel 203:23–31

    CAS  Google Scholar 

  22. Chieffi G, Braun M, Esposito D (2015) Chemsuschem 8:3590–3594

    CAS  PubMed  Google Scholar 

  23. Rodiansono R, Astuti MD, Hara T, Ichikuni N, Shimazu S (2016) Catal Sci Technol 6:2955–2961

    CAS  Google Scholar 

  24. Chen B, Guo H, Wan Z, Xu X, Zhang H, Zhao D, Chen X, Zhang N (2018) Energy Fuel 32:5527–5535

    CAS  Google Scholar 

  25. He L, Qin Y, Lou H, Chen P (2015) RSC Adv 5:43141–43147

    CAS  Google Scholar 

  26. Ochoa E, Torres D, Pinilla J, Suelves I (2019) Catal Today. https://doi.org/10.1016/j.cattod.2019.03.030

    Article  Google Scholar 

  27. Ochoa E, Torres D, Moreira R, Pinilla J, Suelves I (2018) Appl Catal B 239:463–474

    CAS  Google Scholar 

  28. Mai EF, Machado MA, Davies TE, Lopez-Sanchez JA, da Silva VT (2014) Green Chem 16:4092–4097

    CAS  Google Scholar 

  29. Smirnov A, Geng Z, Khromova S, Zavarukhin S, Bulavchenko O, Saraev A, Kaichev V, Ermakov DY, Yakovlev V (2017) J Catal 354:61–77

    CAS  Google Scholar 

  30. Zhang W, Zhang Y, Zhao L, Wei W (2010) Energy Fuel 24:2052–2059

    CAS  Google Scholar 

  31. Tran CC, Han Y, Garcia-Perez M, Kaliaguine S (2019) Catal Sci Technol 9:1387–1397

    CAS  Google Scholar 

  32. Wan W, Jiang Z, Chen JGG (2018) Top Catal 61:439–445

    CAS  Google Scholar 

  33. Wan C, Leonard BM (2015) Chem Mater 27:4281–4288

    CAS  Google Scholar 

  34. Mu J, Shi J, France LJ, Wu Y, Zeng Q, Liu B, Jiang L, Long J, Li X (2018) ACS Appl Mater Interface 10:23112–23121

    CAS  Google Scholar 

  35. Zhao Y, Kamiya K, Hashimoto K, Nakanishi S (2014) J Am Chem Soc 137:110–113

    PubMed  Google Scholar 

  36. Qin Y, He L, Duan J, Chen P, Lou H, Zheng X, Hong H (2014) ChemCatChem 6:2698–2705

    CAS  Google Scholar 

  37. Xiang M, Li D, Li W, Zhong B, Sun Y (2007) Catal Commun 8:513–518

    CAS  Google Scholar 

  38. Han H, Geng W, Xiao L, Wu W (2019) J Taiwan Inst Chem E 95:112–118

    CAS  Google Scholar 

  39. Singh SK, Singh AK, Aranishi K, Xu Q (2011) J Am Chem Soc 133:19638–19641

    CAS  PubMed  Google Scholar 

  40. Yu G, Chai C, Zhu F, Xiao J, Lai W (2001) Appl Phy Lett 78:1706–1708

    CAS  Google Scholar 

  41. Li H, Fang Z, Yang S (2015) ACS Sus Chem Eng 4:236–246

    Google Scholar 

  42. Dong J, Wu Q, Huang C, Yao W, Xu Q (2018) J Mater Chem A 6:10028–10035

    CAS  Google Scholar 

  43. Wang L, Zhang J, Wang M, Che R (2019) J Mater Chem C 7:11167–11176

    CAS  Google Scholar 

  44. Nguyen V, Liu Y, Yang X, Chen W (2015) ECS Electrochem Lett 4:A29–A32

    CAS  Google Scholar 

  45. Deng T, Yan L, Li X, Fu Y (2019) Chemsuschem 12:3837–3848

    CAS  PubMed  Google Scholar 

  46. Zhou H, Song J, Fan H, Zhang B, Yang Y, Hu J, Zhu Q, Han B (2014) Green Chem 16:3870–3875

    CAS  Google Scholar 

  47. Sun HJ, Pan YJ, Jiang HB, Li SH, Zhang YX, Liu SC, Liu ZY (2013) Appl Catal A 464:1–9

    Google Scholar 

  48. Abdelrahman OA, Heyden A, Bond JQ (2014) ACS Catal 4:1171–1181

    CAS  Google Scholar 

  49. Tang X, Chen H, Hu L, Hao W, Sun Y, Zeng X, Lin L, Liu S (2014) Appl Catal B 147:827–834

    CAS  Google Scholar 

  50. Akhmetzyanova U, Tišler Z, Sharkov N, Skuhrovcová L, Pelíšková L, Kikhtyanin O, Mäki-Arvela P, Opanasenko M, Peurla M, Murzin DY (2019) ChemistrySelect 4:8453–8459

    CAS  Google Scholar 

  51. Wang H, Chen C, Zhang H, Wang G, Zhao H (2018) Chin J Catal 39:1599–1607

    CAS  Google Scholar 

  52. Kasar GB, Date NS, Bhosale P, Rode CV (2018) Energy Fuel 32:6887–6900

    CAS  Google Scholar 

  53. Zhang Y, Cao C, Zhang C, Zhang Z, Liu X, Yang Z, Zhu M, Meng B, Xu J, Han YF (2019) J Catal 378:51–62

    CAS  Google Scholar 

  54. Norte THO, Marcelino RBP, Moreira RPL, Binatti I, Starling MCVM, Amorim CC, Pereira ES, Rocha WR, Lago RM (2018) J Environ Eng 144:04018001

    Google Scholar 

  55. Li F, France LJ, Cai Z, Li Y, Liu S, Lou H, Long J, Li X (2017) Appl Catal B 214:67–77

    CAS  Google Scholar 

  56. Michel C, Zaffran J, Ruppert AM, Matras-Michalska J, Jędrzejczyk M, Grams J, Sautet P (2014) Chem Commun 50:12450–12453

    CAS  Google Scholar 

  57. Yan ZP, Lin L, Liu S (2009) Energy Fuel 23:3853–3858

    CAS  Google Scholar 

  58. Al-Shaal MG, Wright WR, Palkovits R (2012) Green Chem 14:1260–1263

    CAS  Google Scholar 

  59. Galletti AMR, Antonetti C, De Luise V, Martinelli M (2012) Green Chem 14:688–694

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (21676074), Basic research expenditure of universities and colleges in Heilongjiang Province (special fund of Heilongjiang University) (HDJCCX-201615), Harbin program of International S&T cooperation (2016AE4AE003, 2016RAXXJ014) and National Key Research and Development Program of China (2018YFE0108800) for the financial supporter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linfei Xiao or Wei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Tian, Y., Xiao, L. et al. Fe–Mo2C: A Magnetically Recoverable Catalyst for Hydrogenation of Ethyl Levulinate Into γ-Valerolactone. Catal Lett 150, 2027–2037 (2020). https://doi.org/10.1007/s10562-020-03124-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03124-z

Keywords

Navigation