Skip to main content

Advertisement

Log in

Enhanced Biosynthesis of Furoic Acid via the Effective Pretreatment of Corncob into Furfural in the Biphasic Media

  • Published:
Catalysis Letters Aims and scope Submit manuscript

A Correction to this article was published on 15 May 2020

This article has been updated

Abstract

Aiming to develop an effective catalytic process for utilizing biomass, conversion of corncob into furfural was firstly performed using tin-loaded bentonite (Sn-BTN) as solid acid catalyst. Corncob was pretreated with Sn-BTN (3.5 wt%) for producing furfural at 53.3% yield in methyl isobutyl ketone-water (5:5, v:v; pH 1.0) biphasic media within 0.5 h at 170 °C. Furthermore, an efficient Sn-BTN recycling was achieved after 5 cycles of repeated use. Finally, furoic acid was obtained at 53.3% yield from corncob via sequential catalysis with solid acid Sn-BTN and Brevibacterium lutescens whole cells harboring furfural-oxidizing activity in methyl isobutyl ketone-H2O (5:5, v:v) media was developed under the relatively mild conditions. Clearly, this hybrid strategy for the synthesis of furoic acid from biomass was successfully developed via tandem catalysis of corncob with Tin-loaded bentonite and Brevibacterium lutescens whole-cell.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 15 May 2020

    An error appeared in our paper entitled “Enhanced Biosynthesis of Furoic Acid via the Effective Pretreatment of Corncob into Furfural in the Biphasic Media” published in Catalysis Letters. Unfortunately, there are some mistakes in the values and equation in the Sect. 2.3 Conversion of Corncob to FAL and in Table 2.

References

  1. Peng K, Li X, Liu X, Wang Y (2017) Mol Catal 441:72

    Article  CAS  Google Scholar 

  2. Dong JJ, Han RZ, Xu GC et al (2018) Bioresour Technol 259:40

    Article  CAS  PubMed  Google Scholar 

  3. Hu L, Li T, Xu J et al (2018) Chem Eng J 352:110

    Article  CAS  Google Scholar 

  4. Jin M, da Costa SL, Schwartz C et al (2016) Green Chem 18:957

    Article  CAS  Google Scholar 

  5. Zhang L, Tian L, Sun R et al (2019) Bioresour Technol 276:60–64

    Article  CAS  PubMed  Google Scholar 

  6. Zhang B, Zhong ZP, Wang XB et al (2015) Fuel Process Technol 138:430

    Article  CAS  Google Scholar 

  7. He YC, Jiang CX, Jiang JW et al (2017) Bioresour Technol 238:698

    Article  CAS  PubMed  Google Scholar 

  8. Peleteiro S, Garrote G, Santos V et al (2014) J Clean Prod 76:200

    Article  CAS  Google Scholar 

  9. Kumar NS, Srivastava VC, Basu S (2013) Indian. Chem Eng 55:153

    CAS  Google Scholar 

  10. Lv G, Chen S, Zhu H et al (2018) J Clean Prod 196:32

    Article  CAS  Google Scholar 

  11. Daengprasert W, Boonnoun P, Laosiripojana N et al (2011) Ind Eng Chem Res 50:7903

    Article  CAS  Google Scholar 

  12. Lam E, Chong JH, Majid E et al (2012) Carbon 50:1033

    Article  CAS  Google Scholar 

  13. Li X, Liu Q, Si C et al (2018) Ind Crop Prod 120:343

    Article  CAS  Google Scholar 

  14. Li XL, Zhang Y, Xia YJ et al (2012) Acta Phys Chim Sin 28:2349

    Article  CAS  Google Scholar 

  15. Gupta NK, Fukuoka A, Nakajima K (2018) ACS Sustain Chem Eng 6:3434

    Article  CAS  Google Scholar 

  16. Verdeguer P, Merat N, Gaset A (2014) Appl Catal A 112:1

    Article  Google Scholar 

  17. Zhou X, Zhou X, Xu Y et al (2017) J Chem Technol Biotechnol 92:1285

    Article  CAS  Google Scholar 

  18. Gong L, Xu ZY, Dong JJ et al (2019) Bioresour Technol 293:122065

    Article  CAS  PubMed  Google Scholar 

  19. Jia Q, Teng X, Yu S et al (2019) Bioresour Technol Rep 6:145–151

    Article  Google Scholar 

  20. Li H, Ren J, Zhong L et al (2015) Bioresour Technol 176:242

    Article  CAS  PubMed  Google Scholar 

  21. Liu QY, Yang F, Liu ZH et al (2015) J Ind Eng Chem 26:46

    Article  CAS  Google Scholar 

  22. He YC, Ma CL, Zhang X et al (2013) Appl Microb Biotechnol 97:7185

    Article  CAS  Google Scholar 

  23. Qiao Z, Liu Q, Zhang S et al (2019) Solid State Sci 96:105948

    Article  CAS  Google Scholar 

  24. Mohamed BA, Ellis N, Kim CS et al (2019) Renew Energy 142:304

    Article  CAS  Google Scholar 

  25. Zhu T, Zhang L, Li Z et al (2019) Mater Lett. https://doi.org/10.1016/j.matlet.2019.126585

    Article  Google Scholar 

  26. Qi X, Lian Y, Yan L et al (2014) Catal Commun 57:50

    Article  CAS  Google Scholar 

  27. Li H, Chen X, Ren J et al (2015) Biotechnol Biofuels 8:127

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mishra RK, Kumar VB, Victor A et al (2019) Ultrason Sonochem 56:55

    Article  CAS  PubMed  Google Scholar 

  29. Antunes MM, Lima S, Fernandes A et al (2012) Catal Today 195:127

    Article  CAS  Google Scholar 

  30. Li X, Yang J, Xu R et al (2019) Ind Crop Prod 135:196

    Article  CAS  Google Scholar 

  31. Fúnez-Núñez I, García-Sancho CJA et al (2019) Appl Catal A 585:117188

    Article  Google Scholar 

  32. Yu L, Liao S, Liang N et al (2016) ACS Sustain Chem Eng 4:1894

    Article  CAS  Google Scholar 

  33. Delolo FG, Oliveira KCB, dos Santos EN et al (2019) Mol Catal 462:1

    Article  CAS  Google Scholar 

  34. Gong XM, Qin Z, Li FL et al (2019) ACS Catal 9:147

    Article  CAS  Google Scholar 

  35. Zheng GW, Liu YY, Chen Q et al (2017) ACS Catal 7:7174

    Article  CAS  Google Scholar 

  36. Huang L, Aalbers FS, Tang W et al (2019) ChemBioChem 20:1653

    Article  CAS  PubMed  Google Scholar 

  37. Wang B, Deng Z, Fu X et al (2008) Appl Catal B 237:970

    Article  Google Scholar 

  38. Wiesfeld JJ, Sommerdijk NAJM, Hensen EJM (2018) Catal Lett 148:3093

    Article  CAS  Google Scholar 

  39. Terell T, Theegala CS (2019) Sustain Energy Fuels 3:1562

    Article  Google Scholar 

  40. Kang K, Shakouri M, Azargohar R et al (2016) Catal Lett 146:2596

    Article  CAS  Google Scholar 

  41. He YC, Liu F, Di JH et al (2016) Ind Crop Prod 81:129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The funding supports of this research by the National Key Research and Development Program of China (2019YFA09005000), the National Natural Science Foundation of China (No. 21978072), the Hubei Provincial Natural Science Foundation of China (2018CFA019), the Science and Technology Innovation Program of Hubei Province (2018ABA098, 2018ABA096), and the Central Committee Guides Local Science and Technology Development Projects (2018ZYYD034) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Cai He.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RQ., Ma, CL., Shen, YF. et al. Enhanced Biosynthesis of Furoic Acid via the Effective Pretreatment of Corncob into Furfural in the Biphasic Media. Catal Lett 150, 2220–2227 (2020). https://doi.org/10.1007/s10562-020-03152-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03152-9

Keywords

Navigation