Skip to main content
Log in

Roles of Alkenes and Coke Formation in the Deactivation of ZSM-5 Zeolites During n-Pentane Catalytic Cracking

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In order to reveal the roles of alkenes and coke formation in catalyst deactivation, n-pentane catalytic cracking was carried out over ZSM-5 zeolites at 650 °C under atmosphere for 100 min on stream, and the operating conditions including the SiO2/Al2O3 ratio of ZSM-5 zeolites, weight hourly space velocity, reactant partial pressure and carrier gas flow rate were tailored. Three indexes i.e. catalyst half-life, average selectivity to ethylene plus propene, and coke burning temperature were defined to qualitatively and quantitatively evaluate the influences of operating conditions on catalytic stability, alkenes formation and coke location. It was found that catalyst stability, alkenes formation and coke location were closely related to each other: Higher alkenes selectivity, more coke on the external surface of ZSM-5 zeolites, and faster catalyst deactivation. This can be attributed to the specific texture of ZSM-5 zeolites. Since the external surface was free from steric hindrance, the coke on the external surface tended to grow bigger and was enhanced by increasing alkenes selectivity. Thus, an increase of alkenes selectivity enhanced the formation of coke on the external surface of ZSM-5 zeolites, which blocked pore openings, accelerated catalyst deactivation and resulted in a low yield of ethylene plus propene of 1.7 wt% after 100 min on stream in n-pentane catalytic cracking; while, a decrease of alkenes selectivity promoted the in-migration of coke to the micro pores of ZSM-5 zeolites, which kept certain pore openings alive, maintained the catalytic activity against the same or even higher coke extent, and led to a high yield of ethylene plus propene of 43.0 wt% after 100 min on stream in n-pentane catalytic cracking.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amghizar I, Vandewalle LA, Van Geem KM, Marin GB (2017) Engineering 3:171–178

    CAS  Google Scholar 

  2. Alotaibi FM, González-Cortés S, Alotibi MF, Xiao T, Al-Megren H, Yang G, Edwards PP (2018) Catal Today 317:86–98

    CAS  Google Scholar 

  3. Che Y, Yuan M, Qiao Y, Liu Q, Zhang J, Tian Y (2019) Fuel 237:1–9

    CAS  Google Scholar 

  4. Bari Siddiqui MA, Aitani AM, Saeed MR, Al-Khattaf S (2010) Top Catal 53:1387–1393

    CAS  Google Scholar 

  5. Al-Khattaf S, Saeed MR, Aitani A, Klein MT (2018) Energy Fuels 32:6189–6199

    CAS  Google Scholar 

  6. Lu J, Zhao Z, Xu C, Duan A, Zhang P (2006) Catal Lett 109:65–70

    CAS  Google Scholar 

  7. Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Yoshimura Y, Murata K, Mizukami F (2002) Catal Lett 84:259–264

    CAS  Google Scholar 

  8. Zheng J, Zhang H, Liu Y, Wang G, Kong Q, Pan M, Tian H, Li R (2016) Catal Lett 146:1457–1469

    CAS  Google Scholar 

  9. Chen S, Manos G (2004) Catal Lett 96:195–200

    CAS  Google Scholar 

  10. Bartholomew CH (2001) Appl Catal A 212:17–60

    CAS  Google Scholar 

  11. Moulijn JA, van Diepen AE, Kapteijn F (2001) Appl Catal A 212:3–16

    CAS  Google Scholar 

  12. Cerqueira HS, Caeiro G, Costa L, Ramôa Ribeiro F (2008) J Mol Catal A 292:1–13

    CAS  Google Scholar 

  13. Guisnet M, Costa L, Ribeiro FR (2009) J Mol Catal A 305:69–83

    CAS  Google Scholar 

  14. Astafan A, Benghalem MA, Pouilloux Y, Patarin J, Bats N, Bouchy C, Daou TJ, Pinard L (2016) J Catal 336:1–10

    CAS  Google Scholar 

  15. Epelde E, Ibañez M, Aguayo AT, Gayubo AG, Bilbao J, Castaño P (2014) Microporous Mesoporous Mater 195:284–293

    CAS  Google Scholar 

  16. Xian X, Ran C, Nai C, Yang P, Zhao S, Dong L (2017) Appl Catal A 547:37–51

    CAS  Google Scholar 

  17. Javaid R, Urata K, Furukawa S, Komatsu T (2015) Appl Catal A 491:100–105

    CAS  Google Scholar 

  18. Urata K, Furukawa S, Komatsu T (2014) Appl Catal A 475:335–340

    CAS  Google Scholar 

  19. Lakiss L, Ngoye F, Canaff C, Laforge S, Pouilloux Y, Qin Z, Tarighi M, Thomas K, Valtchev V, Vicente A, Pinard L, Gilson J-P, Fernandez C (2015) J Catal 328:165–172

    CAS  Google Scholar 

  20. Mores D, Stavitski E, Kox MH, Kornatowski J, Olsbye U, Weckhuysen BM (2008) Chem Eur J 14:11320–11327

    CAS  PubMed  Google Scholar 

  21. Mochizuki H, Yokoi T, Imai H, Namba S, Kondo JN, Tatsumi T (2012) Appl Catal A 449:188–197

    CAS  Google Scholar 

  22. Tian Y, Zhang B, Liang H, Hou X, Wang L, Zhang X, Liu G (2019) Appl Catal A 572:24–33

    CAS  Google Scholar 

  23. Tian Y, Qiu Y, Hou X, Wang L, Liu G (2017) Energy Fuels 31:11987–11994

    CAS  Google Scholar 

  24. Inagaki S, Shinoda S, Kaneko Y, Takechi K, Komatsu R, Tsuboi Y, Yamazaki H, Kondo JN, Kubota Y (2013) ACS Catal 3:74–78

    CAS  Google Scholar 

  25. Wu T, Chen S-L, Yuan G-M, Cao Y-Q, Su K-Y (2017) Fuel Process Technol 167:162–170

    CAS  Google Scholar 

  26. Zhang X, Cheng D-G, Chen F, Zhan X (2018) ChemCatChem 10:2655–2663

    CAS  Google Scholar 

  27. Hou X, Qiu Y, Zhang X, Liu G (2017) Chem Eng J 307:372–381

    CAS  Google Scholar 

  28. Hou X, Qiu Y, Zhang X, Liu G (2017) Chem Eng J 321:572–583

    CAS  Google Scholar 

  29. Hou X, Qiu Y, Yuan E, Li F, Li Z, Ji S, Yang Z, Liu G, Zhang X (2017) Appl Catal A 543:51–60

    CAS  Google Scholar 

  30. Hou X, Qiu Y, Tian Y, Diao Z, Zhang X, Liu G (2018) Chem Eng J 349:297–308

    CAS  Google Scholar 

  31. Hou X, Zhu W, Tian Y, Qiu Y, Diao Z, Feng F, Zhang X, Liu G (2019) Microporous Mesoporous Mater 276:41–51

    CAS  Google Scholar 

  32. Hou X, Qiu Y, Yuan E, Zhang X, Liu G (2017) Appl Catal A 537:12–23

    CAS  Google Scholar 

  33. Hou X, Qiu Y, Zhang X, Liu G (2016) RSC Adv 6:54580–54588

    CAS  Google Scholar 

  34. Diao Z, Wang L, Zhang X, Liu G (2015) Chem Eng Sci 135:452–460

    CAS  Google Scholar 

  35. Guisnet M, Magnoux P, Delmon B, Froment GF (1994) Stud Surf Sci Catal 88:53–68

    CAS  Google Scholar 

  36. Xiao X, Zhang Y, Jiang G, Liu J, Han S, Zhao Z, Wang R, Li C, Xu C, Duan A, Wang Y, Liu J, Wei Y (2016) Chem Commun 52:10068–10071

    CAS  Google Scholar 

  37. Ibáñez M, Valle B, Bilbao J, Gayubo AG, Castaño P (2012) Catal Today 195:106–113

    Google Scholar 

  38. Castaño P, Elordi G, Olazar M, Aguayo AT, Pawelec B, Bilbao J (2011) Appl Catal B 104:91–100

    Google Scholar 

  39. Guichard B, Roy-Auberger M, Devers E, Rebours B, Quoineaud AA, Digne M (2009) Appl Catal A 367:1–8

    CAS  Google Scholar 

  40. Li S, Guo C, Zhang H, Wang Z, Jiao Y, Wang J, Zhu Q, Li X, Chen Y (2017) Int J Hydrog Energy 42:11252–11261

    CAS  Google Scholar 

  41. Liu N, Xie H, Cao H, Shi L, Meng X (2019) Fuel 242:617–623

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge for the financial support from the National Natural Science Foundation of China (Grant No. 21908010), the Education Department of Jilin Province (Grant No. JJKH20191314KJ), and Changchun University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Zhao, L. & Diao, Z. Roles of Alkenes and Coke Formation in the Deactivation of ZSM-5 Zeolites During n-Pentane Catalytic Cracking. Catal Lett 150, 2716–2725 (2020). https://doi.org/10.1007/s10562-020-03173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03173-4

Keywords

Navigation