Skip to main content

Advertisement

Log in

A Highly Stable and Efficient Co–Mg–Sr Mixed Oxide Catalysts for Hydrogen Production from Glycerol Steam Reforming

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The production of hydrogen from glycerol steam reforming (GSR) was studied over a series of Co–Mg–Sr (CMS) mixed oxide catalysts. Co-precipitation method was adopted to prepare catalysts by varying the molar ratios of MgO–SrO and keeping Co3O4 content constant. The physico-chemical properties of the samples were investigated by BET surface area, X-ray diffraction, hydrogen chemisorption, temperature programmed reduction, temperature programmed desorption of CO2, Raman spectroscopy and CHNS analysis. The reforming activity depended on the composition of the metal oxides. The catalyst with Co–Mg–Sr molar ratio of 3:1:1 exhibited the highest catalytic activity at 700 °C. Glycerol was completely converted to gaseous products and showed 72% hydrogen yield. Catalytic activity of the catalysts was explained on the basis of cobalt particle size, basicity and metal oxides interaction. The catalysts basicity originating from MgO–SrO is also playing an important role in GSR. The present catalyst activity was unaltered even after 100 h of time on stream analysis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dieuzeide ML, Jobbagy M, Amadeo N (2014) Int J Hydrog Energy 39:16976

    CAS  Google Scholar 

  2. West RM, Liu ZY, Peter M, Gartner CA, Dumesic JA (2008) J Mol Cat A 296:18

    CAS  Google Scholar 

  3. Garlapati VK, Shankar U, Budhiraja A (2016) Biotechnol Rep 9:14

    Google Scholar 

  4. Sundari R, Vaidya PD (2012) Energy Fuels 26:4195

    CAS  Google Scholar 

  5. Demsash HD, Kondamudi KVK, Upadhyayula S, Mohan R (2018) Fuel Process Technol 169:150

    CAS  Google Scholar 

  6. Tran NH, Kannangara GSK (2013) Chem Soc Rev 42:9454

    CAS  PubMed  Google Scholar 

  7. Adhikari S, Fernando S, Haryanto A (2007) Catal Today 129:355

    CAS  Google Scholar 

  8. Simonetti DA, Kunkes EL, Dumesic JA (2007) J Catal 247:298

    CAS  Google Scholar 

  9. Hirai T, Ikenaga N, Miyake T, Suzuki T (2005) Energy Fuels 19:1761

    CAS  Google Scholar 

  10. Kunkes EL, Soares RR, Simonetti DA, Dumesic JA (2009) Appl Catal B 90:693

    CAS  Google Scholar 

  11. Zhang B, Tang X, Li Y, Xu Y, Shen W (2007) Int J Hydrog Energy 32:2367

    CAS  Google Scholar 

  12. Cheng CK, Foo SY, Adesina AA (2010) Catal Commun 12:292

    CAS  Google Scholar 

  13. Pereira EB, de la Piscina PR, Homs N (2011) Bioresour Technol 102:3419

    CAS  PubMed  Google Scholar 

  14. Calles JA, Carrero A, Vizcaino AJ, Garcia-Moreno L (2014) Catal Today 227:198

    CAS  Google Scholar 

  15. Karim AM, Su Y, Sun J, Yang C, Strohm JJ, King DL, Wang Y (2010) Appl Catal B 96:441

    CAS  Google Scholar 

  16. Kim KS, Lee YK (2010) Int J Hydrog Energy 35:5378

    CAS  Google Scholar 

  17. de la Piscina PR, Homs N (2008) Chem Soc Rev 37:2459

    Google Scholar 

  18. Surendar M, Padmakar D, Lingaiah N, Rama Rao KS, Sai Prasad PS (2017) Sustain Energy Fuels 1:354

    CAS  Google Scholar 

  19. Furusawa T, Tsutsumi A (2005) Appl Catal A 278:207

    CAS  Google Scholar 

  20. Polychronopoulou K, Giannakopoulos K, Efstathiou AM (2012) Appl Catal B 111:360

    Google Scholar 

  21. Hadden RA, Howe JC, Waugh KC (1991) Stud Surf Sci Catal 68:177

    CAS  Google Scholar 

  22. Sekine Y, Mukai D, Murai Y, Tochiya S, Izutsu Y, Sekiguchi K, Hosomura N, Arai H, Kikuchi E, Sugiura Y (2013) Appl Catal A 451:160

    CAS  Google Scholar 

  23. Rossetti I, Gallo A, Santo VD, Bianchi CL, Nichele V, Signoretto M, Finocchio E, Ramis G, Michele AD (2013) ChemCatChem 5:294

    CAS  Google Scholar 

  24. Guo Y, Azmat MU, Liu X, Wang Y, Lu G (2012) Appl Energy 92:218

    CAS  Google Scholar 

  25. Kousi K, Chourdakis N, Matralis H, Kontarides D, Papadopoulou C, Verykios X (2016) Appl Catal A 518:129

    CAS  Google Scholar 

  26. Krishnan SG, Reddy MV, Harilal M, Vidyadharan B, Misnon II, Rahim MHA, Ismail J, Jose R (2015) Electrochim Acta 161:312

    CAS  Google Scholar 

  27. Tantirungrotechai J, Thepwatee S, Yoosuk B (2013) Fuel 106:279

    CAS  Google Scholar 

  28. Guo X, Li Y, Shi R, Liu Q, Zhan E, Shen W (2009) Appl Catal A 371:108

    CAS  Google Scholar 

  29. Wang HY, Ruckenstein E (2001) Appl Catal A 209:207

    CAS  Google Scholar 

  30. Radwan NRE, Ghozza AM, El-Shobaky GA (2003) Thermochim Acta 398:211

    CAS  Google Scholar 

  31. Polychronopoulou K, Efstathiou AM (2006) Catal Today 116:341

    CAS  Google Scholar 

  32. Jean-Marie A, Griboval-Constant A, Khodakov AY, Monflier E, Diehl F (2011) Chem Commun 47:10767

    CAS  Google Scholar 

  33. Yang Z, Xie W (2007) Fuel Process Technol 88:631

    CAS  Google Scholar 

  34. Jiang J, Li L (2007) Mater Lett 61:4894

    CAS  Google Scholar 

  35. Christy M, Jisha MR, Kim AR, Nahm KS, Yoo DJ, Suh EK, Kumari TSD, Kumar TP, Stephan AM (2011) Bull Korean Chem Soc 32:1204

    CAS  Google Scholar 

  36. Surendar M, Sagar TV, Hari Babu B, Lingaiah N, Rama Rao KS, Sai Prasad PS (2015) RSC Adv 5:45184

    CAS  Google Scholar 

  37. Araque M, Martinez TLM, Vargas JC, Centeno MA, Roger AC (2012) Appl Catal B 125:556

    CAS  Google Scholar 

  38. Rahman MS, Polychronopoulou K, Polycarpou AA (2019) J Nucl Mater 521:21

    CAS  Google Scholar 

  39. He R, Davda RR, Dumesic JA (2005) J Phys Chem B 109:2810

    CAS  PubMed  Google Scholar 

  40. Shi C, Zhang P (2015) Appl Catal B 170:43

    Google Scholar 

  41. Jing Q, Lou H, Fei J, Hou Z, Zheng X (2004) Int J Hydrog Energy 29:1245

    CAS  Google Scholar 

  42. Dieuzeide ML, Jobbagy M, Amadeo N (2013) Catal Today 213:50

    CAS  Google Scholar 

  43. Charisiou ND, Siakavelas G, Papageridis KN, Baklavaridis A, Tzounis L, Polychronopoulou K, Goula MA (2017) Int J Hydrog Energy 42:13039

    CAS  Google Scholar 

  44. Thyssen VV, Georgetti F, Assaf EM (2017) Int J Hydrog Energy 42:16979

    CAS  Google Scholar 

  45. Demsash HD, Mohan R (2016) Int J Hydrog Energy 41:22732

    CAS  Google Scholar 

  46. Polychronopoulou K, Charisiou ND, Siakavelas GI, AlKhoori AA, Sebastian V, Hinder SJ, Baker MA, Goula MA (2019) Sustain Energy Fuels 3:673

    CAS  Google Scholar 

  47. Charisiou ND, Tzounis L, Sebastian V, Hinder SJ, Baker MA, Polychronopoulou K, Goula MA (2019) Appl Surf Sci 474:42

    CAS  Google Scholar 

  48. Charisiou ND, Papageridis KN, Tzounis L, Sebastian V, Hinder SJ, Baker MA, AlKetbi M, Polychronopoulou K, Goula MA (2019) Int J Hydrog Energy 44:256

    CAS  Google Scholar 

Download references

Acknowledgements

The Authors DP and MS are thankful for the UGC and CSIR for awarding the Fellowship. Authors also thank Director, CSIR-IICT for permitting to publish the results (Communication Number IICT/Pubs./2019/184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lingaiah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmakar, D., Surendar, M., Chandrashekar, P. et al. A Highly Stable and Efficient Co–Mg–Sr Mixed Oxide Catalysts for Hydrogen Production from Glycerol Steam Reforming. Catal Lett 150, 2734–2743 (2020). https://doi.org/10.1007/s10562-020-03181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03181-4

Keywords

Navigation