Skip to main content

Advertisement

Log in

Synthesis of Imines by Selective Oxidation of Amines on alloy nanoparticles of palladium and gold under visible light irradiation at ambient temperatures

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Imines are important intermediates in organic synthesis. To avoid derivatives, the research on direct oxidized amines as an alternative method is imminent. The gold (Au)–palladium (Pd) alloy nanoparticles (NPs) catalyst shows a favourable activity and high selectivity on benzylamine oxidation reaction under light irradiation. The yield of the reaction on the alloy NPs with a Au:Pd ratio of 1:1.86 in the dark was 36% at 45 °C, while the yield increased to 95% under light illumination. The study demonstrates different properties from alloy NP to pure Au NP and Pd NP catalysts which may be caused by increased surface charge heterogeneity in the alloy system. The conversion rate of the reaction can also be enhanced by light irradiation and heat. The light energy which utilized by Localized Surface Plasmon Resonance effect of gold in alloy system can highly enhanced the efficiency of reaction. These findings provide useful guidelines for designing efficient alloy catalysts with a plasmonic metal and a catalytically active transition metal for various organic syntheses driven by sunlight.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schümperli MT, Hammond C, Hermans I (2012) ACS Catal 2:1108–1117

    Google Scholar 

  2. Jin JJ, Yang CJ, Zhang BG, Deng KJ (2018) J Catal 361:33–39

    CAS  Google Scholar 

  3. Li X, Xu H, Shi JL, Hao HM, Yuan H, Lang XJ (2019) Appl Catal B 5:758–766

    Google Scholar 

  4. Mori K, Yamaguchi K, Mizugaki T, Ebitani K, Kaneda K (2001) Chem Commun 5:461–462

    Google Scholar 

  5. Bailey AJ, James BR (1996) Chem Commun 20:2343–2344

    Google Scholar 

  6. Grirrane A, Corma A, Garcia H (2009) J Catal 264:138–144

    CAS  Google Scholar 

  7. Zhu B, Lazar M, Trewyn BG, Angelici RJ (2008) J Catal 260:1–6

    CAS  Google Scholar 

  8. Sankar M, He Q, Dawson S, Nowicka E, Lu L, Bruijnincx PCA, Beale AM, Kiely CJ, Weckhuysen BM (2016) Catal Sci Technol 6:5473–5482

    CAS  Google Scholar 

  9. Su F, Mathew SC, Mohlmann L, Antonietti M, Wang X, Blechert S (2011) Angew Chem Int Ed 50:657–660

    CAS  Google Scholar 

  10. Lang X, Ji H, Chen C, Ma W, Zhao J (2011) Angew Chem Int Ed 50:3934–3937

    CAS  Google Scholar 

  11. Landge SM, Atanassova V, Thimmaiah M, Török B (2007) Tetrahedron Lett 48:5161–5164

    CAS  Google Scholar 

  12. Hartings M (2012) Nat Chem 4:764–764

    CAS  PubMed  Google Scholar 

  13. Gao DW, Wang ZL, Wang C, Wang LY, Chi Y, Wang MG, Zhang JJ, Wu C, Gu Y, Wang HL, Zhao ZK (2019) Chem Eng J 361:953–959

    CAS  Google Scholar 

  14. Trzeciak AM, Augustyniak AW (2019) Coord Chem Rev 384:1–20

    CAS  Google Scholar 

  15. McNulty J, Capretta A, Wilson J, Dyck J, Adjabeng G, Robertson A (2002) Chem Commun 17:1986–1987

    Google Scholar 

  16. Mathews CJ, Smith PJ, Welton T (2000) Chem Commun 14:1249–1250

    Google Scholar 

  17. McLachlan F, Mathews CJ, Smith PJ, Welton T (2003) Organometallics 22:5350–5357

    CAS  Google Scholar 

  18. Mulvaney P (1996) Langmuir 12:788–800

    CAS  Google Scholar 

  19. Kamat PV (2002) J Phys Chem B 106:7729–7744

    CAS  Google Scholar 

  20. Voisin C, Del Fatti N, Christofilos D, Vallée F (2001) J Phys Chem B 105:2264–2280

    CAS  Google Scholar 

  21. Yamada K, Miyajima K, Mafuné F (2007) J Phys Chem C 111:11246–11251

    CAS  Google Scholar 

  22. Zeng S, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011) Plasmonics 6:491–506

    CAS  Google Scholar 

  23. Brus L (2008) Acc Chem Res 41:1742–1749

    CAS  PubMed  Google Scholar 

  24. Chen X, Zhu HY, Zhao JC, Zheng ZT, Gao XP (2008) Angew Chem Int Ed 47:5353–5356

    CAS  Google Scholar 

  25. Zhu HY, Chen X, Zheng ZF, Ke XB, Jaatinen E, Zhao JC, Guo C, Xie TF, Wang DJ (2009) Chem Commun 48:7524–7526

    Google Scholar 

  26. Zhu HY, Ke XB, Yang XZ, Sarina S, Liu HW (2010) Angew Chem Int Ed 49:9657–9661

    CAS  Google Scholar 

  27. Zhang N, Liu SQ, Xu YJ (2012) Nanoscale 4:2227–2238

    CAS  PubMed  Google Scholar 

  28. Christopher P, Xin HL, Linic S (2011) Nat Chem 3:467–472

    CAS  PubMed  Google Scholar 

  29. Tang W, Henkelman G (2009) J Chem Phys 130:194504–194506

    PubMed  Google Scholar 

  30. Link S, El-Sayed MA (2000) Int Rev Phys Chem 19:409–453

    CAS  Google Scholar 

  31. Sarina S, Zhu HY, Jaatinen E, Xiao Q, Liu HW, Jia JF, Chen C, Zhao J (2013) J Am Chem Soc 135:5793–5801

    CAS  PubMed  Google Scholar 

  32. Sarina S, Waclawik ER, Zhu H (2013) Green Chem 15:1814–1833

    CAS  Google Scholar 

  33. Bohren CF, Huffman DR (2007) Wiley-VCH Verlag GmbH, Weinheim pp 325–380.

  34. Samec JSM, Ell AH, Backvall JE (2005) Chem-Eur J 11:2327–2334

    CAS  PubMed  Google Scholar 

  35. Neumann R, Levin M (1991) J Org Chem 56:5707–5710

    CAS  Google Scholar 

  36. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311:362–365

    CAS  PubMed  Google Scholar 

  37. Kesavan L, Tiruvalam R, Rahim MHA, Saiman Bin MI, Enache DI, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ (2011) Science 331:195–199

    CAS  PubMed  Google Scholar 

  38. Christopher P, Xin HL, Marimuthu A, Linic S (2012) Nat Mater 11:1044–1050

    CAS  PubMed  Google Scholar 

  39. Ke XB, Sarina S, Zhao J, Zhang XG, Chang J, Zhu HY (2012) Chem Commun 48:3509–3511

    CAS  Google Scholar 

  40. Zhang HJ, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Nat Mater 11:49–52

    Google Scholar 

  41. Xiao L, Zhang Q, Chen P, Chena L, Ding F, Tanga J, Li YJ, Au CT, Yin SF (2019) Appl Catal B 248:380–387

    CAS  Google Scholar 

  42. Chen L, Tang J, Song LN, Chen P, He J, Au CT, Yin SF (2019) Appl Catal B 242:379–388

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially support by Scientific Research Program of Higher Education Institutions of Inner Mongolia Autonomous Region (NJZY18054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianliang Sheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eerdemutu, Ding, L., Li, C. et al. Synthesis of Imines by Selective Oxidation of Amines on alloy nanoparticles of palladium and gold under visible light irradiation at ambient temperatures. Catal Lett 150, 1757–1765 (2020). https://doi.org/10.1007/s10562-019-03079-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03079-w

Keywords

Navigation