Skip to main content
Log in

Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

β-Alanine is a naturally occurring β-amino acid that has been widely applied in the life and health field. Although microbial fermentation is a promising method for industrial production of β-alanine, an efficient microbial cell factory is still lacking. In this study, a new metabolically engineered Escherichia coli strain for β-alanine production was developed through a series of introduction, deletion, and overexpression of genes involved in its biosynthesis pathway. First, the L-aspartate a-decarboxylase gene, BtADC, from Bacillus tequilensis, with higher catalytic activity to produce β-alanine from aspartate, was constitutively expressed in E. coli, leading to an increased production of β-alanine up to 2.76 g/L. Second, three native aspartate kinase genes, akI, akII, and akIII, were knocked out to promote the production of β-alanine to a higher concentration of 4.43 g/L by preventing from bypass loss of aspartate. To increase the amount of aspartate, the native AspC gene was replaced with PaeAspDH, a L-aspartate dehydrogenase gene from Pseudomonas aeruginosa, accompanied with the overexpression of the native AspA gene, to further improve the production level of β-alanine to 9.27 g/L. Last, increased biosynthesis of oxaloacetic acid (OAA) was achieved by a combination of overexpression of the native PPC, introduction of CgPC, a pyruvate decarboxylase from Corynebacterium glutamicum, and deletion of ldhA, pflB, pta, and adhE in E. coli, to further enhance the production of β-alanine. Finally, the engineered E. coli strain produced 43.12 g/L β-alanine in fed-batch fermentation. Our study will lay a solid foundation for the promising application of β-alanine in the life and health field.

Key Points

Overexpression of BtADC resulted in substantial accumulation of β-alanine.

The native AspC was replaced with PaeAspDH to catalyze the transamination of OAA.

Deletion of gluDH prevented from losing carbon flux in TCA recycle.

A 43.12-g/L β-alanine production in fed-batch fermentation was achieved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bakardjiev A, Bauer K (1994) Transport of β-alanine and biosynthesis of carnosine by skeletal muscle cells in primary culture. Eur J Biochem 225:617–623

    Article  CAS  PubMed  Google Scholar 

  • Bartolomeo MP, Maisano F (2006) Validation of a reversed-phase HPLC method for quantitative amino acid analysis. J Biomol Tech 17:131–137

    PubMed  PubMed Central  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brencher L, Verhaegh R, Kirsch M (2017) Attenuation of intestinal ischemia-reperfusion-injury by β-alanine: a potentially glycine-receptor mediated effect. J Surg Res 211:233–241

    Article  CAS  PubMed  Google Scholar 

  • Brown GM (1970) Section d-biosynthesis of pantothenic acid and coenzyme A. Compr Biochem 21:73–80

    Article  Google Scholar 

  • Chen C, Li Y, Hu J, Dong X, Wang X (2015) Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production. Metab Eng 29:66–75

    Article  PubMed  CAS  Google Scholar 

  • Chopra S, Pai H, Ranganathan A (2002) Expression, purification, and biochemical characterization of Mycobacterium tuberculosis aspartate decarboxylase, PanD. Protein Expr Purif 25:533–540

    Article  CAS  PubMed  Google Scholar 

  • Cronan JE (1980) Beta-alanine synthesis in Escherichia coli. J Bacteriol 141:1291–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui W, Shi Z, Fang Y, Zhou L, Ding N, Zhou Z (2014) Significance of Arg3, Arg54, and Tyr58 of L-aspartate α-decarboxylase from Corynebacterium glutamicum in the process of self-cleavage. Biotechnol Lett 36:121–126

    Article  CAS  PubMed  Google Scholar 

  • Dunnet M, Harris RC (1999) Influence of oral beta-alanine and L-histidine supplementation on the carnosine content of the gluteus medius. Equine Vet J Suppl S30:499–504

    Article  Google Scholar 

  • Dusch N, Pühler A, Kalinowski J (1999) Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-α-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol 65:1530–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Zhang J, Chen G, Cha Y, Liu J, Ge Y, Cheng S, Yu B (2016) Isolation, identification and fermentation optimization of Bacillus tequilensis PanD37 producing L-aspartate α-decarboxylase. Acta Microbiol Sin 56:44–55

    CAS  Google Scholar 

  • Feng Z, Zhang J, Chen G, Ge Y, Zhang X, Zhu H (2019) Extracellular expression of L-aspartate-α-decarboxylase from B. tequilensis and its application in the biosynthesis of β-alanine. Appl Biochem Biotechnol 189:273–283

    Article  CAS  PubMed  Google Scholar 

  • Fouad WM, Rathinasabapathi B (2006) Expression of bacterial L-aspartate-alpha-decarboxylase in tobacco increases beta-alanine and pantothenate levels and improves thermotolerance. Plant Mol Biol 60:495–505

    Article  CAS  PubMed  Google Scholar 

  • Gary W, Paul M (1989) Purification and characterization of methylmalonate-semialdehyde dehydrogenase from rat liver. Identity to malonate-semialdehyde dehydrogenase. J Biol Chem 264:14965–14971

    Article  Google Scholar 

  • Gopalan G, Chopra S, Ranganathan A, Swaminathan K (2010) Crystal structure of uncleaved L-aspartate-alpha-decarboxylase from Mycobacterium tuberculosis. Proteins. 65:796–802

    Article  CAS  Google Scholar 

  • Griffith OW (1986) Beta-amino acids: mammalian metabolism and utility as alpha-amino acid analogue. Annu Rev Biochem 55:855–878

    Article  CAS  PubMed  Google Scholar 

  • Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526–W531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris RC, Tallon MJ, Dunnet M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA (2006) The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30:279–289

    Article  CAS  PubMed  Google Scholar 

  • Hayaishi O, Nishizuka Y, Tatibana M, Takeshita M, Kuno S (1961) Enzymatic studies on the metabolism of beta-alanine. J Biol Chem 236:781–790

    Article  CAS  PubMed  Google Scholar 

  • Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA (2007) Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 32:225–233

    Article  CAS  PubMed  Google Scholar 

  • Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM (1999) Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol 17:588–592

    Article  CAS  PubMed  Google Scholar 

  • Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B, Kraal L, Tolonen AC, Gianoulis TA, Goodma DB, Reppas NB, Emig CJ, Bang D, Hwang SJ, Jewett MC, Jacobson JM, Church GM (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333:348–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong J, Cho N, Jung D, Bang D (2013) Genome-scale genetic engineering in Escherichia coli. Biotechnol Adv 31:804–810

    Article  CAS  PubMed  Google Scholar 

  • Kedishvili NY, Popov KM, Rougraff PM, Zhao Y, Crabb DW, Harris RA (1992) CoA-dependent methylmalonate-semialdehyde dehydrogenase, a unique member of the aldehyde dehydrogenase superfamily cDNA cloning, evolutionary relationships, and tissue distribution. J Biol Chem 267:19724–19729

    Article  CAS  PubMed  Google Scholar 

  • Koffas MA, Jung GY, Aon JC, Stephanopoulos G (2002) Effect of pyruvate carboxylase overexpression on the physiology of Corynebacterium glutamicum. Appl Environ Microbiol 68:5422–5428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Könst P, Franssen M, Scott E, Sanders J (2009) A study on the applicability of L-aspartate alpha-decarboxylase in the biobased production of nitrogen containing chemicals. Green Chem 11:1646

    Article  CAS  Google Scholar 

  • Kotaka M, Ren J, Lockyer M, Hawkins AR, Stammers DK (2006) Structures of R- and T-state Escherichia coli aspartokinase III. Mechanisms of the allosteric transition and inhibition by lysine. J Biol Chem 281:31544–31552

    CAS  PubMed  Google Scholar 

  • Li Y, Kawakami N, Ogola HJ, Ashida H, Ishikawa T, Shibata H, Sawa Y (2011) A novel L-aspartate dehydrogenase from the mesophilic bacterium Pseudomonas aeruginosa PAO1: molecular characterization and application for L-aspartate production. Appl Microbiol Biotechnol 90:1953–1962

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ogola HJO, Sawa Y (2012) L-aspartate dehydrogenase: features and applications. Appl Microbiol Biotechnol 93:503–516

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wei H, Wang T, Xu Q, Zhang C, Fan X, Ma Q, Chen N, Xie X (2017) Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. Bioresour Technol 245:1588–1602

    Article  CAS  PubMed  Google Scholar 

  • Li H, Lu X, Chen K, Yang J, Zhang A, Wang X, Ouyanga P (2018) β-Alanine production using whole-cell biocatalysts in recombinant Escherichia coli. Mol Catal 449:93–98

    Article  CAS  Google Scholar 

  • Liang LY, Zheng YG, Shen YC (2008) Optimization of β-alanine production from βaminopropionitrile by resting cells of Rhodococcus sp. G20 in a bubble column reactor using response surface methodology. Process Biochem 43:758–764

    Article  CAS  Google Scholar 

  • Lundgren S, Gojković Z, Piskur J, Dobritzsch D (2003) Yeast beta-alanine synthase shares a structural scaffold and origin with dizinc-dependent exopeptidases. J Biol Chem 278:51851–51862

    Article  CAS  PubMed  Google Scholar 

  • Nozaki S, Webb ME, Niki H (2012) An activator for pyruvoyl-dependent L-aspartate α-decarboxylase is conserved in a small group of the γ-proteobacteria including Escherichia coli. Microbiology Open 1:298–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega MV, Cárdenas A, Ubiera D (1975) panD, a new chromosomal locus of Salmonella typhimurium for the biosynthesis of beta-alanine. Mol Gen Genet 140:159–164

    Article  CAS  PubMed  Google Scholar 

  • Pei W, Zhang J, Deng S, Tigu F, Li Y, Li Q, Cai Z, Li Y (2017) Molecular engineering of L-aspartate-α-decarboxylase for improved activity and catalytic stability. Appl Microbiol Biotechnol 101:6015–6021

    Article  CAS  PubMed  Google Scholar 

  • Poteete AR, Fenton AC (2000) Genetic requirements of phage lambda red-mediated gene replacement in Escherichia coli K-12. J Bacteriol 182:2336–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman SB, Rathinasabapathi B (2004) Pantothenate synthesis in plants. Plant Sci 167:961–968

    Article  CAS  Google Scholar 

  • Ramjee MK, Genschel U, Abell C, Smith AG (1997) Escherichia coli l-aspartate-α-decarboxylase: preprotein processing and observation of reaction intermediates by electrospray mass spectrometry. Biochem J 323:661–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sale C, Saunders B, Harris RC (2010) Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids 39:321–333

    Article  CAS  PubMed  Google Scholar 

  • Sharp PM, Li WH (1986) Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res 14:7737–7749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Zhao L, Li Y, Zhang L, Shi G (2014) Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum. Biotechnol Lett 36:1681–1686

    Article  CAS  PubMed  Google Scholar 

  • Slotnick IJ (1956) Dihydrouracil as a growth factor for a mutant strain of Escherichia coli. J Bacteriol 72:276–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song CW, Lee SY (2015) Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid. Appl Microbiol Biotechnol 99:8455–8464

    Article  CAS  PubMed  Google Scholar 

  • Song CW, Kim DI, Choi S, Jang JW, Lee SY (2013) Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol Bioeng 110:2025–2034

    Article  CAS  PubMed  Google Scholar 

  • Song CW, Lee J, Ko YS, Lee SY (2015) Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng 30:121–129

    Article  CAS  PubMed  Google Scholar 

  • Stuecker TN, Bramhacharya S, Hodge-Hanson KM, Suen G, Escalante-Semerena JC (2015) Phylogenetic and amino acid conservation analyses of bacterial l-aspartate-α-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain. BMC Res Notes 8:354–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terano S, Suzuki Y (1978) Formation of β-alanine from spermine and spermidine in maize shoots. Phytochemistry 17:148–149

    Article  CAS  Google Scholar 

  • Underwood SA, Buszko ML, Shanmugam KT, Ingram LO (2002) Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Envrion Microbiol 68:1071–1081

    Article  CAS  Google Scholar 

  • Velasco AM, Leguina JI, Lazcano A (2002) Molecular evolution of the lysine biosynthetic pathways. J Mol Evol 55:445–459

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    Article  CAS  PubMed  Google Scholar 

  • Wheat T, Grumbach E, Mazzeo J (2006) A new amino acid analysis application solution. LCGC N Am 19:26–27

    Google Scholar 

  • White WH, Gunyuzlu PL, Toyn JH (2001) Saccharomyces cerevisiae is capable of de novo pantothenic acid biosynthesis involving a novel pathway of β-alanine production from spermine. J Biol Chem 276:10794–10800

    Article  CAS  PubMed  Google Scholar 

  • Williamson JM, Brown GM (1979) Purification and properties of L-aspartate-alpha-decarboxylase, an enzyme that catalyzes the formation of beta-alanine in Escherichia coli. J Biol Chem 254:8074–8082

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Jantama K, Moore JC, Shanmugam KT, Ingram LO (2007) Production of L-alanine by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:355–366

    Article  CAS  PubMed  Google Scholar 

Download references

Author contribution statement

JZ and ZF conceived and designed research. XZ, LG, LH, ML, and SZ conducted experiments. AY, YZ, and LZ analyzed data. JZ, ZF, and XZ wrote the manuscript. HZ polished the manuscript. All authors read and approved the manuscript.

Funding

This work was funded by the National Mega Project of GMO Crops of China (2016ZX08004-002-006) and the Major Scientific and Technological Innovation Project of Shandong Province (2019GSF107094). This work was also funded by the National Natural Science Foundation of China (31901987) and the Project of Shandong Province Higher Educational Science and Technology Program (J14LE07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Zhang or Zhibin Feng.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Guo, L., Huang, L. et al. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli. Appl Microbiol Biotechnol 104, 2545–2559 (2020). https://doi.org/10.1007/s00253-020-10359-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10359-8

Keywords

Navigation