Skip to main content

Advertisement

Log in

Development strategies in transition metal carbide for hydrogen evolution reaction: A review

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Economically viable hydrogen production by water electrolysis requires an inexpensive and efficient electrocatalyst Transition metal carbides (TMCs) have many merits such as low price, platinum-like catalytic activity, high physical stability, and electrical conductivity. This review presents strategies for improving the catalytic activity of TMCs. It highlights synthesis using nanostructuring by inorganic-organic complexes and carbon supports to increase the number of active sites and to facilitate mass transport, and modification of electronic configuration by heteroatom doping, heterostructure, and phase control to increase intrinsic activity. The review concludes with an outlook on challenges to achieving practical TMC catalysts for the hydrogen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. S. Dresselhaus and I. L. Thomas, Nature, 414, 332 (2001).

    CAS  PubMed  Google Scholar 

  2. S. T. Thompson and D. Papageorgopoulos, Nat. Catal., 2, 558 (2019).

    CAS  Google Scholar 

  3. X. Zou and Y. Zhang, Chem. Soc. Rev., 44, 5148 (2015).

    CAS  PubMed  Google Scholar 

  4. J. Wang, F. Xu, H. Jin, Y. Chen and Y. Wang, Adv. Mater., 29, 1605838 (2017).

    Google Scholar 

  5. Y. Shi and B. Zhang, Chem. Soc. Rev., 45, 1529 (2016).

    CAS  PubMed  Google Scholar 

  6. D. Merki and X. Hu, Energy Environ. Sci., 4, 3878 (2011).

    CAS  Google Scholar 

  7. Q. Gao, W. Zhang Z. Shi, L. Yang and Y. Tang, Adv. Mater., 31, 1802880 (2019).

    Google Scholar 

  8. P. Xiao, X. Ge, H. Wang, Z. Liu, A. Fisher and X. Wang, Adv. Funct. Mater., 25, 1520 (2015).

    CAS  Google Scholar 

  9. D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, Nano Lett., 13, 6222 (2013).

    CAS  PubMed  Google Scholar 

  10. J. G. Chen, Chem. Rev., 96, 1477 (1996).

    CAS  PubMed  Google Scholar 

  11. H. H. Hwu and J. G. Chen, Chem. Rev., 105, 185 (2005).

    CAS  PubMed  Google Scholar 

  12. H. Vrubel and X. Hu, Angew. Chem. Int. Ed., 51, 12703 (2012).

    CAS  Google Scholar 

  13. J. R. Kitchin, J. K. Nørskov, M. A. Barteau and J. G. Chen, Catal. Today, 105, 66 (2005).

    CAS  Google Scholar 

  14. Q. Gong, Y. Wang, Q. Hu, J. Zhou, R. Feng, P. N. Duchesne, P. Zhang, F. Chen, N. Han, Y. Li, C. Jin, Y. Li and S.-T. Lee, Nat. Commun., 7, 13216 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. J. Patt, D. J. Moon, C. Phillips and L. Thompson, Catal. Lett., 65, 193 (2000).

    CAS  Google Scholar 

  16. E. Furimsky, Appl. Catal. A Gen., 240, 1 (2003).

    CAS  Google Scholar 

  17. B. Dhandapani, T. St. Clair and S. T. Oyama, Appl. Catal. A Gen., 168, 219 (1998).

    CAS  Google Scholar 

  18. S. Wirth, F. Harnisch, M. Weinmann and U. Schröder, Appl. Catal. B Environ., 126, 225 (2012).

    CAS  Google Scholar 

  19. J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao, C. Wei and Z. J. Xu, Nano-Micro Lett., 10, 75 (2018).

    CAS  Google Scholar 

  20. I. Ledezma-Yanez, W. D. Z. Wallace, P. Sebastián-Pascual, V. Climent, J. M. Feliu and M. T. M. Koper, Nat. Energy, 2, 17031 (2017).

    CAS  Google Scholar 

  21. J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan and M. Gratzel, Science, 345, 1593 (2014).

    CAS  PubMed  Google Scholar 

  22. B. E. Conway and B. V. Tilak, Electrochim. Acta, 47, 3571 (2002).

    CAS  Google Scholar 

  23. R. Michalsky, Y.-J. Zhang and A. A. Peterson, ACS Catal., 4, 1274 (2014).

    CAS  Google Scholar 

  24. S. T. Oyama, J. C. Schlatter, J. E. Metcalfe and J. M. Lambert, Ind. Eng. Chem. Res., 27, 1639 (1988).

    CAS  Google Scholar 

  25. J. Lu, H. Hugosson, O. Eriksson, L. Nordström and U. Jansson, Thin Solid Films, 370, 203 (2000).

    CAS  Google Scholar 

  26. T. Hyeon, M. Fang and K. S. Suslick, J. Am. Chem. Soc., 118, 5492 (1996).

    CAS  Google Scholar 

  27. W.-F. Chen, C.-H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu and R. R. Adzic, Energy Environ. Sci., 6, 943 (2013).

    CAS  Google Scholar 

  28. Y. Zhao, K. Kamiya, K. Hashimoto and S. Nakanishi, J. Am. Chem. Soc., 137, 110 (2015).

    CAS  PubMed  Google Scholar 

  29. S. T. Hunt, T. Nimmanwudipong and Y. Román-Leshkov, Angew. Chem. Int. Ed., 53, 5131 (2014).

    CAS  Google Scholar 

  30. S. T. Hunt, M. Milina, A. C. Alba-Rubio, C. H. Hendon, J. A. Dumesic and Y. Roman-Leshkov, Science, 352, 974 (2016).

    CAS  PubMed  Google Scholar 

  31. L. J. Kecskes and A. Niiler, J. Am. Ceram. Soc., 72, 655 (1989).

    CAS  Google Scholar 

  32. J. S. Lee, S. T. Oyama and M. Boudart, J. Catal., 106, 125 (1987).

    CAS  Google Scholar 

  33. C. Wan, Y. N. Regmi and B. M. Leonard, Angew. Chem. Int. Ed., 53, 6407 (2014).

    CAS  Google Scholar 

  34. J. B. Claridge, A. P. E. York, A. J. Brungs and M. L. H. Green, Chem. Mater., 12, 132 (2000).

    CAS  Google Scholar 

  35. Z. Wu, Y. Yang, D. Gu, Q. Li, D. Feng, Z. Chen, B. Tu, P. A. Webley and D. Zhao, Small, 5, 2738 (2009).

    CAS  PubMed  Google Scholar 

  36. X. Fan, Z. Peng, R. Ye, H. Zhou and X. Guo, ACS Nano, 9, 7407 (2015).

    CAS  PubMed  Google Scholar 

  37. J. Hojo, R. Oono and A. Kato, J. Mater. Sci., 15, 2335 (1980).

    CAS  Google Scholar 

  38. H. T. Kim, S.-Y. Lee, H.-R. Lee and C. Park, Korean J. Chem. Eng., 35, 246 (2018).

    CAS  Google Scholar 

  39. Q. Gao, N. Liu, S. Wang and Y. Tang, Nanoscale, 6, 14106 (2014).

    CAS  PubMed  Google Scholar 

  40. R. Ma, Y. Zhou, Y. Chen, P. Li, Q. Liu and J. Wang, Angew. Chem. Int. Ed., 54, 14723 (2015).

    CAS  Google Scholar 

  41. H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao and Y. Tang, Chem. Sci., 7, 3399 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. S. Kim, C. Choi, J. Hwang, J. Park, J. Jeong, H. Jun, S. Lee, S.-K. Kim, J. H. Jang, Y. Jung and J. Lee, ACS Nano, 14, 4988 (2020).

    CAS  PubMed  Google Scholar 

  43. X. Fan, H. Zhou and X. Guo, ACS Nano, 9, 5125 (2015).

    CAS  PubMed  Google Scholar 

  44. J.-S. Li, Y. Wang, C.-H. Liu, S.-L. Li, Y.-G. Wang, L.-Z. Dong, Z.-H. Dai, Y.-F. Li and Y.-Q. Lan, Nat. Commun., 7, 1 (2016).

    Google Scholar 

  45. N. Han, K. R. Yang, Z. Lu, Y. Li, W. Xu, T. Gao, Z. Cai, Y. Zhang, V. S. Batista, W. Liu and X. Sun, Nat. Commun., 9, 1 (2018).

    Google Scholar 

  46. H. Lin, N. Liu, Z. Shi, Y. Guo, Y. Tang and Q. Gao, Adv. Funct. Mater., 26, 5590 (2016).

    CAS  Google Scholar 

  47. F. Yu, Y. Gao, Z. Lang, Y. Ma, L. Yin, J. Du, H. Tan, Y. Wang and Y. Li, Nanoscale, 10, 6080 (2018).

    CAS  PubMed  Google Scholar 

  48. C. Wan and B. M. Leonard, Chem. Mater., 27, 4281 (2015).

    CAS  Google Scholar 

  49. Y.-Y. Chen, Y. Zhang, W.-J. Jiang, X. Zhang, Z. Dai, L.-J. Wan and J.-S. Hu, ACS Nano, 10, 8851 (2016).

    CAS  PubMed  Google Scholar 

  50. S. Bukola, B. Merzougui, A. Akinpelu and M. Zeama, Electrochim. Acta, 190, 1113 (2016).

    CAS  Google Scholar 

  51. T. Y. Ma, J. L. Cao, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Ed., 55, 1138 (2016).

    CAS  Google Scholar 

  52. K. Zhang, Y. Zhao, S. Zhang, H. Yu, Y. Chen, P. Gao and C. Zhu, J. Mater. Chem. A, 2, 18715 (2014).

    CAS  Google Scholar 

  53. H. Yan, Y. Xie, Y. Jiao, A. Wu, C. Tian, X. Zhang, L. Wang and H. Fu, Adv. Mater., 30, 1704156 (2018).

    Google Scholar 

  54. A. Nilsson, L. G. M. Pettersson, B. Hammer, T. Bligaard, C. H. Christensen and J. K. Nørskov, Catal. Lett., 100, 111 (2005).

    CAS  Google Scholar 

  55. Y. Gao, Z. Lang, F. Yu, H. Tan, G. Yan, Y. Wang, Y. Ma and Y. Li, ChemSusChem, 11, 1082 (2018).

    CAS  PubMed  Google Scholar 

  56. L. He, W. Zhang, Q. Mo, W. Huang, L. Yang and Q. Gao, Angew. Chem. Int. Ed., 59, 3544 (2020).

    CAS  Google Scholar 

  57. X. Zhang, J. Wang, T. Guo, T. Liu, Z. Wu, L. Cavallo, Z. Cao and D. Wang, Appl. Catal. B Environ., 247, 78 (2019).

    CAS  Google Scholar 

  58. Q. Gong, Y. Wang, Q. Hu, J. Zhou, R. Feng, P. N. Duchesne, P. Zhang, F. Chen, N. Han, Y. Li, C. Jin, Y. Li and S.-T. Lee, Nat. Commun., 7, 13216 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. J. R. dos S. Politi, F. Viñes, J. A. Rodriguez and F. Illas, Phys. Chem. Chem. Phys., 15, 12617 (2013).

    CAS  PubMed  Google Scholar 

  60. C. Giordano, C. Erpen, W. Yao and M. Antonietti, Nano Lett., 8, 4659 (2008).

    CAS  PubMed  Google Scholar 

  61. W.-F. Chen, S. Iyer, S. Iyer, K. Sasaki, C.-H. Wang, Y. Zhu, J. T. Muckerman and E. Fujita, Energy Environ. Sci., 6, 1818 (2013).

    CAS  Google Scholar 

  62. Y. Huang, J. Ge, J. Hu, J. Zhang, J. Hao and Y. Wei, Adv. Energy Mater., 8, 1701601 (2018).

    Google Scholar 

  63. Y. Liu, G. Yu, G.-D. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, Angew. Chem. Int. Ed., 54, 10752 (2015).

    CAS  Google Scholar 

  64. Y.-R. Lee, J. Kim and W.-S. Ahn, Korean J. Chem. Eng., 30, 1667 (2013).

    CAS  Google Scholar 

  65. N. M. Mahmoodi, M. Taghizadeh and A. Taghizadeh, Korean J. Chem. Eng., 36, 287 (2019).

    CAS  Google Scholar 

  66. R. Kim, S. Jee, U. Ryu, H. S. Lee, S. Y. Kim and K. M. Choi, Korean J. Chem. Eng., 36, 975 (2019).

    CAS  Google Scholar 

  67. P. Kumar, E. Vejerano, A. Khan, G. Lisak, J. H. Ahn and K.-H. Kim, Korean J. Chem. Eng., 36, 1839 (2019).

    CAS  Google Scholar 

  68. H. B. Wu, B. Y. Xia, L. Yu, X.-Y. Yu and X. W. Lou, Nat. Commun., 6, 6512 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. H. Zhang, Z. Ma, G. Liu, L. Shi, J. Tang, H. Pang, K. Wu, T. Takei, J. Zhang, Y. Yamauchi and J. Ye, NPG Asia Mater., 8, e293 (2016).

    CAS  Google Scholar 

  70. P. Liu and J. K. Nørskov, Phys. Chem. Chem. Phys., 3, 3814 (2001).

    CAS  Google Scholar 

  71. D. H. Youn, S. Han, J. Y. Kim, J. Y. Kim, H. Park, S. H. Choi and J. S. Lee, ACS Nano, 8, 5164 (2014).

    CAS  PubMed  Google Scholar 

  72. A. M. Gómez-Marín and E. A. Ticianelli, Appl. Catal. B Environ., 209, 600 (2017).

    Google Scholar 

  73. Z. Shi, K. Nie, Z.-J. Shao, B. Gao, H. Lin, H. Zhang, B. Liu, Y. Wang, Y. Zhang, X. Sun, X.-M. Cao, P. Hu, Q. Gao and Y. Tang, Energy Environ. Sci., 10, 1262 (2017).

    CAS  Google Scholar 

  74. C. Tang, W. Wang, A. Sun, C. Qi, D. Zhang, Z. Wu and D. Wang, ACS Catal., 5, 6956 (2015).

    CAS  Google Scholar 

  75. Y. Zheng, Y. Jiao, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Ed., 54, 52 (2015).

    CAS  Google Scholar 

  76. Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec and S. Z. Qiao, ACS Nano, 8, 5290 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. G. Zhao, K. Rui, S. X. Dou and W. Sun, Adv. Funct. Mater., 28, 1803291 (2018).

    Google Scholar 

  78. Y. N. Regmi, A. Roy, G. A. Goenaga, J. R. McBride, B. R. Rogers, T. A. Zawodzinski, N. Labbé and S. C. Chmely, ChemCatChem, 9, 1054 (2017).

    CAS  Google Scholar 

  79. T. Liu, X. Zhang, T. Guo, Z. Wu and D. Wang, Electrochim. Acta, 334, 135624 (2020).

    CAS  Google Scholar 

  80. Y. Liu, B. Huang and Z. Xie, Appl. Surf. Sci., 427, 693 (2018).

    CAS  Google Scholar 

  81. H. Zhang, H. Jin, Y. Yang, F. Sun, Y. Liu, X. Du, S. Zhang, F. Song, J. Wang, Y. Wang and Z. Jiang, J. Energy Chem., 35, 66 (2019).

    CAS  Google Scholar 

  82. R. B. Levy and M. Boudart, Science, 181, 547 (1973).

    CAS  PubMed  Google Scholar 

  83. Y.-T. Xu, X. Xiao, Z.-M. Ye, S. Zhao, R. Shen, C.-T. He, J.-P. Zhang, Y. Li and X.-M. Chen, J. Am. Chem. Soc., 139, 5285 (2017).

    CAS  PubMed  Google Scholar 

  84. G. Yan, C. Wu, H. Tan, X. Feng, L. Yan, H. Zang and Y. Li, J. Mater. Chem. A, 5, 765 (2017).

    CAS  Google Scholar 

  85. Y.-J. Ko, J.-M. Cho, I. Kim, D. S. Jeong, K.-S. Lee, J.-K. Park, Y.-J. Baik, H.-J. Choi and W.-S. Lee, Appl. Catal. B Environ., 203, 684 (2017).

    CAS  Google Scholar 

  86. B. Ren, D. Li, Q. Jin, H. Cui and C. Wang, J. Mater. Chem. A, 5, 13196 (2017).

    CAS  Google Scholar 

  87. J. Shi, Z. Pu, Q. Liu, A. M. Asiri, J. Hu and X. Sun, Electrochim. Acta, 154, 345 (2015).

    CAS  Google Scholar 

  88. S. M. Schmuecker, D. Clouser, T. J. Kraus and B. M. Leonard, Dalton T., 46, 13524 (2017).

    CAS  Google Scholar 

  89. A. Ignaszak, C. Song, W. Zhu, J. Zhang, A. Bauer, R. Baker, V. Neburchilov, S. Ye and S. Campbell, Electrochim. Acta, 69, 397 (2012).

    CAS  Google Scholar 

  90. A. A. Edigaryan, V. A. Safonov, E. N. Lubnin, L. N. Vykhodtseva, G. E. Chusova and Y. M. Polukarov, Electrochim. Acta, 47, 2775 (2002).

    CAS  Google Scholar 

  91. P. R. Deshmukh, H. S. Hyun, Y. Sohn and W. G. Shin, Korean J. Chem. Eng., 37, 546 (2020).

    CAS  Google Scholar 

  92. W.-F. Chen, J. T. Muckerman and E. Fujita, Chem. Commun., 49, 8896 (2013).

    CAS  Google Scholar 

  93. S. Li, C. Yang, Z. Yin, H. Yang, Y. Chen, L. Lin, M. Li, W. Li, G. Hu and D. Ma, Nano Res., 10, 1322 (2017).

    CAS  Google Scholar 

  94. L. Zhang, Y. Chen, P. Zhao, W. Luo, S. Chen and M. Shao, Electrocatalysis, 9, 264 (2018).

    CAS  Google Scholar 

  95. H. Xu, J. Wan, H. Zhang, L. Fang, L. Liu, Z. Huang, J. Li, X. Gu and Y. Wang, Adv. Energy Mater., 8, 1800575 (2018).

    Google Scholar 

  96. S. Lee, M. Choun, Y. Ye, J. Lee, Y. Mun, E. Kang, J. Hwang, Y.-H. Lee, C.-H. Shin, S.-H. Moon, S.-K. Kim, E. Lee and J. Lee, Angew. Chem. Int. Ed., 54, 9230 (2015).

    CAS  Google Scholar 

  97. Y. Mun, M. J. Kim, S.-A. Park, E. Lee, Y. Ye, S. Lee, Y.-T. Kim, S. Kim, O.-H. Kim, Y.-H. Cho, Y.-E. Sung and J. Lee, Appl. Catal. B Environ., 222, 191 (2018).

    CAS  Google Scholar 

  98. D. Joo, K. Han, J. H. Jang and S. Park, Korean J. Chem. Eng., 36, 299 (2019).

    CAS  Google Scholar 

  99. M. A. R. Anjum, M. H. Lee and J. S. Lee, ACS Catal., 8, 8296 (2018).

    CAS  Google Scholar 

  100. J. Xing, Y. Li, S. Guo, T. Jin, H. Li, Y. Wang and L. Jiao, Electrochim. Acta, 298, 305 (2019).

    CAS  Google Scholar 

  101. D. Y. Chung, S. W. Jun, G. Yoon, H. Kim, J. M. Yoo, K.-S. Lee, T. Kim, H. Shin, A. K. Sinha, S. G. Kwon, K. Kang, T. Hyeon and Y.-E. Sung, J. Am. Chem. Soc., 139, 6669 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20182010600430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwoo Lee.

Additional information

Conflict of Interest

The authors have no conflict of interest.

Jinwoo Lee received his B.S., M.S. and Ph.D degrees from the Department of Chemical and Biological Engineering of Seoul National University (SNU), Korea, in 1998, 2000, and 2003, respectively. After postdoctoral research at SNU (with Prof. Taeghwan Hyeon) and Cornell University (with Prof. Ulrich Wiesner), he joined the faculty of the Department of Chemical Engineering at Pohang University of Science and Technology (POSTECH) (2008-2018). In 2018, he joined the faculty of the Department of Chemical and Biomolecular Engineering at Korea Advanced Institute of Science and Technology (KAIST). He is interested in the synthesis and application of designed nano-functional materials for energy conversion and storage devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jun, H., Kim, S. & Lee, J. Development strategies in transition metal carbide for hydrogen evolution reaction: A review. Korean J. Chem. Eng. 37, 1317–1330 (2020). https://doi.org/10.1007/s11814-020-0612-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0612-4

Keywords

Navigation