Skip to main content
Log in

New cyclodextrin-based supramolecular nanocapsule for codelivery of curcumin and gallic acid

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Curcumin, as a naturally occurring polyphenol, has been extensively used as anticancer and antioxidant agent due to its ability to protect cells from oxidative damage. However, its poor solubility and low bioavailability have limited its application. To increase the solubility and effectiveness of curcumin, a new multi-drug delivery system is developed based on curcumin-loaded cyclodextrin-conjugated gallic acid. For this purpose, β-cyclodextrin was grafted by gallic acid, and then, a 2:1 inclusion complex of cyclodextrin and curcumin was prepared. The mean particle size of the curcumin-loaded β-CD-g-GA was about 100 nm by DLS. All observations using FT-IR, NMR, UV–Vis and FE-SEM confirmed successful preparation of the CUR@β-CD-graft-gallic acid. In addition, antioxidant activity and release behavior of the curcumin-loaded β-CD-graft-GA was investigated. The IC50 value for CUR@β-CD-g-GA was estimated (0.4909 µg/mL) based on their inhibition percent–concentration curves using DPPH assay. Also, the total released amount of curcumin within 48 h in pH 7.4 and 5.4 was 41% and 91%, respectively. Because the designed multi-drug delivery system is convenient to prepare, possesses appropriate antioxidant activity and pH-sensitive release behavior and most importantly composed of fully green and safe materials, it may represent an attractive new potent multi-drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ren J, Li Q, Dong F, Feng Y, Guo Z (2013) Phenolic antioxidants-functionalized quaternized chitosan: synthesis and antioxidant properties. Int J Biol Macromol 53:77–81. https://doi.org/10.1016/j.ijbiomac.2012.11.011

    Article  PubMed  CAS  Google Scholar 

  2. Zhang M, Song CC, Su S, Du FS, Li ZC (2018) ROS-activated ratiometric fluorescent polymeric nanoparticles for self-reporting drug delivery. ACS Appl Mater Interfaces 10(9):7798–7810. https://doi.org/10.1021/acsami.7b18438

    Article  PubMed  CAS  Google Scholar 

  3. Singh A, Kureel AK, Dutta PK, Kumar S, Rai AK (2018) Curcumin loaded chitin-glucan quercetin conjugate: synthesis, characterization, antioxidant, in vitro release study, and anticancer activity. Int J Biol Macromol 110:234–244. https://doi.org/10.1016/j.ijbiomac.2017.11.002

    Article  PubMed  CAS  Google Scholar 

  4. Singh A, Dutta PK, Kumar H, Kureel AK, Rai AK (2018) Synthesis of chitin-glucan-aldehyde-quercetin conjugate and evaluation of anticancer and antioxidant activities. Carbohydr Polym 193:99–107. https://doi.org/10.1016/j.carbpol.2018.03.092

    Article  PubMed  CAS  Google Scholar 

  5. Wróblewska-Krepsztul J, Rydzkowski T, Borowski G, Szczypiński M, Klepka T, Thakur VK (2018) Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. Int J Polym Anal Charact 23(4):383–395. https://doi.org/10.1080/1023666X.2018.1455382

    Article  Google Scholar 

  6. Gao Y, Jiang F, Zhang L et al (2016) Enzymatic synthesis of polyguaiacol and its thermal antioxidant behavior in polypropylene. Polym Bull 73:1343. https://doi.org/10.1007/s00289-015-1551-9

    Article  CAS  Google Scholar 

  7. Coscia MG, Bhardwaj J, Singh N, Santonicola MG, Richardson R, Thakur VK, Rahatekar S (2018) Manufacturing & characterization of regenerated cellulose/curcumin based sustainable composites fibers spun from environmentally benign solvents. Ind Crop Prod 111:536–543. https://doi.org/10.1016/j.indcrop.2017.09.041

    Article  CAS  Google Scholar 

  8. Pandele AM, Neacsu P, Cimpean A, Staras AI, Miculescu F, Iordache A, Thakur VK, Toader OD (2018) Cellulose acetate membranes functionalized with resveratrol by covalent immobilization for improved osseointegration. Appl Surf Sci 438:2–13. https://doi.org/10.1016/j.apsusc.2017.11.102

    Article  CAS  Google Scholar 

  9. Lim LM, Wong JJL, Wang D, Cheow WS, Hadinoto K (2018) Amorphous ternary nanoparticle complex of curcumin-chitosan-hypromellose exhibiting built-in solubility enhancement and physical stability of curcumin. Colloids Surf B 167:483–491. https://doi.org/10.1016/j.colsurfb.2018.04.049

    Article  CAS  Google Scholar 

  10. Raveendran R, Mullen KM, Wellard RM, Sharma CP, Hoogenboom R, Dargaville TR (2017) Poly (2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. Eur Polym J 93:682–694. https://doi.org/10.1016/j.eurpolymj.2017.02.043

    Article  CAS  Google Scholar 

  11. Rui L, Xie M, Hu B, Zhou L, Yin D, Zeng X (2017) A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydr Polym 173:473–481. https://doi.org/10.1016/j.carbpol.2017.05.072

    Article  PubMed  CAS  Google Scholar 

  12. Munin A, Edwards-Lévy F (2011) Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3(4):793–829. https://doi.org/10.3390/pharmaceutics3040793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yang TS, Liu TT, Lin IH (2017) Functionalities of chitosan conjugated with stearic acid and gallic acid and application of the modified chitosan in stabilizing labile aroma compounds in an oil-in-water emulsion. Food Chem 228:541–549. https://doi.org/10.1016/j.foodchem.2017.02.035

    Article  PubMed  CAS  Google Scholar 

  14. Liu J, Wang X, Yong H, Kan J, Zhang N, Jin C (2018) Preparation, characterization, digestibility and antioxidant activity of quercetin grafted Cynanchum auriculatum starch. Int J Biol Macromol 114:130–136. https://doi.org/10.1016/j.ijbiomac.2018.03.101

    Article  PubMed  CAS  Google Scholar 

  15. Sattari S, Tehrani AD, Adeli M, Azarbani F (2018) Development of new nanostructure based on poly (aspartic acid)-g-amylose for targeted curcumin delivery using helical inclusion complex. J Mol Liq 258:18–26. https://doi.org/10.1016/j.molliq.2018.02.116

    Article  CAS  Google Scholar 

  16. Park HH, Ko SC, Oh GW, Jang YM, Kim YM, Park WS, Jung WK (2018) Characterization and biological activity of PVA hydrogel containing chitooligosaccharides conjugated with gallic acid. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2018.06.070

    Article  PubMed  Google Scholar 

  17. Esfanjani AF, Jafari SM (2016) Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B 146:532–543. https://doi.org/10.1016/j.colsurfb.2016.06.053

    Article  CAS  Google Scholar 

  18. Chanphai P, Tajmir-Riahi HA (2017) Probing the binding of resveratrol, genistein and curcumin with chitosan nanoparticles. J Mol Liq 243:108–114. https://doi.org/10.1016/j.molliq.2017.08.024

    Article  CAS  Google Scholar 

  19. Thakur S, Sharma B, Verma A, Chaudhary J, Tamulevicius S, Thakur VK (2018) Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J Clean Prod 198:143–159. https://doi.org/10.1016/j.jclepro.2018.06.259

    Article  CAS  Google Scholar 

  20. Miculescu F, Maidaniuc A, Voicu SI, Thakur VK, Stan GE, Ciocan LT (2017) Progress in hydroxyapatite–starch based sustainable biomaterials for biomedical bone substitution applications. ACS Sustain Chem Eng 5(10):8491–8512. https://doi.org/10.1021/acssuschemeng.7b02314

    Article  CAS  Google Scholar 

  21. Aytac Z, Uyar T (2016) Antioxidant activity and photostability of α-tocopherol/β-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers. Eur Polym J 79:140–149. https://doi.org/10.1016/j.eurpolymj.2016.04.029

    Article  CAS  Google Scholar 

  22. Kamimura JA, Santos EH, Hill LE, Gomes CL (2014) Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. LWT-Food Sci Technol 57(2):701–709. https://doi.org/10.1016/j.lwt.2014.02.014

    Article  CAS  Google Scholar 

  23. Zhang L, Man S, Qiu H, Liu Z, Zhang M, Ma L, Gao W (2016) Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin. Environ Toxicol Pharmacol 48:31–38. https://doi.org/10.1016/j.etap.2016.09.021

    Article  PubMed  CAS  Google Scholar 

  24. Shlar I, Droby S, Choudhary R, Rodov V (2017) The mode of antimicrobial action of curcumin depends on the delivery system: monolithic nanoparticles vs. supramolecular inclusion complex. RSC Adv 7(67):42559–42569. https://doi.org/10.1039/C7RA07303H

    Article  CAS  Google Scholar 

  25. Olga G, Styliani C, Ioannis RG (2015) Coencapsulation of ferulic and gallic acid in hp-b-cyclodextrin. Food Chem 185:33–40. https://doi.org/10.1016/j.foodchem.2015.03.058

    Article  PubMed  CAS  Google Scholar 

  26. Cheng JG, Tian BR, Huang Q, Ge HR, Wang ZZ (2018) Resveratrol functionalized carboxymethyl-β-Cyclodextrin: synthesis, characterization, and photostability. J Chem 1:2–8. https://doi.org/10.1155/2018/6789076

    Article  CAS  Google Scholar 

  27. Nazir S, Soetikno JS, Ho AL (2018) Antioxidant properties of polyphenol glycoside catalyzed by transglycosylation reaction of cyclodextrin glucanotransferase derived from Trichoderma viride. J Food Biochem. https://doi.org/10.1111/jfbc.12499

    Article  Google Scholar 

  28. Vieira AC, Serra AC, Veiga FJ, Gonsalves AMDAR, Basit AW, Murdan S (2016) Diclofenac-β-cyclodextrin for colonic drug targeting: in vivo performance in rats. Int J Pharm 500(1–2):366–370. https://doi.org/10.1016/j.ijpharm.2016.01.024

    Article  PubMed  CAS  Google Scholar 

  29. Chu HM, Zhang RX, Huang Q, Bai CC, Wang ZZ (2017) Chemical conjugation with cyclodextrins as a versatile tool for drug delivery. J Inclusion Phenom Macrocyclic Chem 89(1–2):29–38. https://doi.org/10.1007/s10847-017-0743-3

    Article  CAS  Google Scholar 

  30. Mujeeb Rahman P, Abdul Mujeeb VM, Muraleedharan K (2017) Chitosan–green tea extract powder composite pouches for extending the shelf life of raw meat. Polym Bull 74:3399. https://doi.org/10.1007/s00289-016-1901-2

    Article  CAS  Google Scholar 

  31. Mangolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML, Neto AM, Matioli G (2014) Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem 153:361–370. https://doi.org/10.1016/j.foodchem.2013.12.067

    Article  PubMed  CAS  Google Scholar 

  32. Chatterjee NS, Panda SK, Navitha M, Asha KK, Anandan R, Mathew S (2015) Vanillic acid and coumaric acid grafted chitosan derivatives: improved grafting ratio and potential application in functional food. J Food Sci Technol 52(11):7153–7162. https://doi.org/10.1007/s13197-015-1874-4

    Article  CAS  Google Scholar 

  33. Cho YS, Kim SK, Ahn CB, Je JY (2011) Preparation, characterization, and antioxidant properties of gallic acid-grafted-chitosans. Carbohydr Polym 83(4):1617–1622. https://doi.org/10.1016/j.carbpol.2010.10.019

    Article  CAS  Google Scholar 

  34. Xie M, Hu B, Wang Y, Zeng X (2014) Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer. J Agric Food Chem 62(37):9128–9136. https://doi.org/10.1021/jf503207s

    Article  PubMed  CAS  Google Scholar 

  35. Criado P, Fraschini C, Salmieri S, Becher D, Safrany A, Lacroix M (2016) Free radical grafting of gallic acid (GA) on cellulose nanocrystals (CNCS) and evaluation of antioxidant reinforced gellan gum films. Radiat Phys Chem 118:61–69. https://doi.org/10.1016/j.radphyschem.2015.05.030

    Article  CAS  Google Scholar 

  36. Hu L, Kong D, Hu Q, Gao N, Pang S (2015) Evaluation of high-performance curcumin nanocrystals for pulmonary drug delivery both in vitro and in vivo. Nanoscale Res Lett 10(1):381

    Article  CAS  Google Scholar 

  37. Sbora RALUCA, Budura EA, Niţulescu GM, Balaci T, Lupuleasa D (2015) Preparation and characterization of inclusion complexes of prazosin hydrochloride with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J Pharm Biomed Anal 63(4):548–555. https://doi.org/10.1186/s11671-015-1085-y

    Article  CAS  Google Scholar 

  38. Wu A, Shen X, He Y (2006) Investigation on γ-cyclodextrin nanotube induced by N, N′-diphenylbenzidine molecule. J Colloid Interface Sci 297(2):525–533. https://doi.org/10.1016/j.jcis.2005.11.014

    Article  PubMed  CAS  Google Scholar 

  39. Tang B, Ma L, Wang HY, Zhang GY (2002) Study on the supramolecular interaction of curcumin and β-cyclodextrin by spectrophotometry and its analytical application. J Agric Food Chem 50(6):1355–1361. https://doi.org/10.1021/jf0111965

    Article  PubMed  CAS  Google Scholar 

  40. Zhu G, Xiao Z, Zhu G (2017) Preparation, characterization and the release kinetics of mentha-8-thiol-3-one-β-cyclodextrin inclusion complex. Polym Bull 74:2263. https://doi.org/10.1007/s00289-016-1835-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to gratefully acknowledge the support of Lorestan University. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Dadkhah Tehrani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1073 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omrani, Z., Dadkhah Tehrani, A. New cyclodextrin-based supramolecular nanocapsule for codelivery of curcumin and gallic acid. Polym. Bull. 77, 2003–2019 (2020). https://doi.org/10.1007/s00289-019-02845-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02845-5

Keywords

Navigation