Skip to main content
Log in

Enhanced performance of planar perovskite solar cells using Ce-doped TiO2 as electron transport layer

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electron transport layer plays a key role in improving charge extraction efficiency and inhibiting electron–hole recombination in perovskite solar cells. In this study, Ce ion was doped into compact TiO2 layer to improve electron transport performance of TiO2 thin film. Through UV–Vis and UPS tests, it was found that TiO2 obtained an appropriate band position after Ce ions doping. Specially speaking, Ce-doped TiO2 band position facilitates electron transport at the interface. As a result, the device based on 0.009 M Ce-TiO2 shows the power conversion efficiency is 16.18%, which is 5.75% higher than the device without Ce ions doping. In this work, we provided a new method to improve the electron extraction rate of TiO2 thin film, which is beneficial for performance of the devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ahn N, Son DY, Jang IH, Kang SM, Choi M (2015) J Am Chem Soc 137:8696–8699

    Article  CAS  Google Scholar 

  2. Stranks SD, Eperon GE, Grancini G (2013) Science 342:341–344

    Article  CAS  Google Scholar 

  3. Wehrenfennig C, Eperon GE, Johnston MB (2014) Adv Mater 26:1584–1589

    Article  CAS  Google Scholar 

  4. Lee MM, Teuscher J, Miyasaka T (2012) Science 338:643–647

    Article  CAS  Google Scholar 

  5. Xing G, Mathews N, Sun S, Lim SS (2013) Science 342:344–347

    Article  CAS  Google Scholar 

  6. Han F, Luo J, Wan Z, Liu X (2017) Appl Surf Sci 408:34–37

    Article  CAS  Google Scholar 

  7. Wang Z, Fang J, Mi Y, Zhu X, Ren H (2018) Appl Surf Sci 436:596–602

    Article  CAS  Google Scholar 

  8. Kojima A, Teshima K, Shirai Y (2009) J Am Chem Soc 131:6050–6051

    Article  CAS  Google Scholar 

  9. https://www.nrel.gov/pv/cell-efficiency.html

  10. Agresti A, Pazniak A, Pescetelli S, Di Vito A (2019) Nat Mater. https://doi.org/10.1038/s41563-019-0478-1

    Article  Google Scholar 

  11. Dou Y, Wang D, Li G, Liao Y, Sun W, Wu J, Lan Z (2019) Appl Mater Interfaces 11:32159–32168

    Article  CAS  Google Scholar 

  12. Li H, Tong G, Chen T, Zhu H, Li G, Chang Y (2018) J Mater Chem A 6:14255–14261

    Article  CAS  Google Scholar 

  13. Zhang S, Hu Z, Zhang J, Jia X, Jiang J, Chen Y (2019) J Power Sources 438:226987. https://doi.org/10.1016/j.jpowsour.2019.226987

    Article  CAS  Google Scholar 

  14. Ke W, Mao L, Stoumpos CC, Hoffman J, Spanopoulos I, Mohite AD, Kanatzidis MG (2019) Adv Energy Mater 9:1803384. https://doi.org/10.1002/aenm.201803384

    Article  CAS  Google Scholar 

  15. Fu X, Dong N, Lian G, Lv S, Zhao T, Wang Q, Cui D, Wong CP (2018) Nano Lett 18:1213–1220

    Article  CAS  Google Scholar 

  16. Arain Z, Liu C, Ren Y, Yang Y, Mateen M, Liu X, Ding Y, Ali Z, Liu X, Dai S, Hayat T, Alsaedi A (2019) ACS Appl Mater Interfaces 11:16704–16712

    Article  CAS  Google Scholar 

  17. Correa-Baena J-P, Abate A, Saliba M, Tress W, Jesper Jacobsson T, Grätzel M, Hagfeldt A (2017) Energy Environ Sci 10:710–727

    Article  CAS  Google Scholar 

  18. Zhang C, Luo Y, Chen X, Ou-Yang W (2016) Appl Surf Sci 388:82–88

    Article  CAS  Google Scholar 

  19. Yang IS, You JS, Sung SD, Chung CW, Kim J (2016) Nano Energy 20:272–282

    Article  CAS  Google Scholar 

  20. Zhu T, Gao S-P (2014) J Phys Chem C 118:11385–11396

    Article  CAS  Google Scholar 

  21. Heo JH, Song DH, Han HJ, Kim SY, Kim JH (2015) Adv Mater 27:3424–3430

    Article  CAS  Google Scholar 

  22. An Q, Fassl P, Hofstetter YJ, Becker-Koch D (2017) Nano Energy 39:400–408

    Article  CAS  Google Scholar 

  23. Liu D, Kelly TL (2013) Nat Photon 8:133–138

    Article  Google Scholar 

  24. Zhou H, Shi Y, Wang K, Dong Q, Bai X, Xing Y (2015) J Phys Chem C 119:4600–4605

    Article  CAS  Google Scholar 

  25. Zhou W, Zhen J, Liu Q, Fang Z, Li D, Zhou P (2017) J Mater Chem A 5:1724–1733

    Article  CAS  Google Scholar 

  26. Docampo P, Guldin S, Steiner U, Snaith HJ (2013) J Phys Chem Lett 4:698–703

    Article  CAS  Google Scholar 

  27. Ponseca CS Jr, Savenije TJ, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P (2014) J Am Chem Soc 136:5189–5192

    Article  CAS  Google Scholar 

  28. Gao F, Dai H, Pan H, Chen Y, Wang J, Chen Z (2018) J Colloid Interface Sci 513:693–699

    Article  CAS  Google Scholar 

  29. Roose B, Pathak S, Steiner U (2015) Doping of TiO2 for sensitized solar cells. Chem Soc Rev 44:8326–8349

    Article  CAS  Google Scholar 

  30. Zhen C, Wu T, Chen R, Wang L, Liu G, Cheng H-M (2019) ACS Sustain Chem Eng 7:4586–4618

    Article  CAS  Google Scholar 

  31. Lee DG, Kim M-C, Kim BJ, Kim DH, Lee SM, Choi M, Lee S, Jung HS (2019) Appl Surf Sci 477:131–136

    Article  CAS  Google Scholar 

  32. Jeong I, Park YH, Bae S, Park M, Jeong H, Lee P, Ko MJ (2017) ACS Appl Mater Interfaces 9:36865–36874

    Article  CAS  Google Scholar 

  33. Liu X, Liu Z, Sun B, Tan X, Ye H, Tu Y, Shi T, Tang Z, Liao G (2018) Nano Energy 50:201–211

    Article  CAS  Google Scholar 

  34. Cai Q, Zhang Y, Liang C, Li P, Gu H (2018) Electrochim Acta 261:227–235

    Article  CAS  Google Scholar 

  35. Jiang L-L, Wang Z-K, Li M, Li C-H (2018) Solar RRL 2:1800149. https://doi.org/10.1002/solr.201800149

    Article  CAS  Google Scholar 

  36. Wang L, Yuan Z, Egerton TA (2012) Mater Chem Phys 133:304–310

    Article  CAS  Google Scholar 

  37. Anirban S, Dutta A (2017) Solid State Ionics 309:137–145

    Article  CAS  Google Scholar 

  38. Wang S, Liu B, Zhu Y, Ma Z, Liu B, Miao X, Ma R, Wang C (2018) Sol Energy 169:335–342

    Article  CAS  Google Scholar 

  39. Wang X, Zhang Z, Qin J, Shi W, Liu Y, Gao H, Mao Y (2017) Electrochim Acta 245:839–845

    Article  CAS  Google Scholar 

  40. Wang J, Qin M, Tao H, Ke W (2015) Appl Phys Lett 106:121104. https://doi.org/10.1063/1.4916345

    Article  CAS  Google Scholar 

  41. Baena J, Steier L, Tress W (2015) Energy Environ Sci 8:2928–2934

    Article  Google Scholar 

  42. Liang C, Li P, Zhang Y (2017) J Power Sources 372:235–244

    Article  CAS  Google Scholar 

  43. Zhou H, Chen Q, Li G (2014) Science 345:542–546

    Article  CAS  Google Scholar 

  44. Liu X, Wu Z, Zhang Y, Tsamis C (2019) Appl Surf Sci 471:28–35

    Article  CAS  Google Scholar 

  45. Zhang Y, Liu X, Li P, Duan Y, Hu X, Li F, Song Y (2019) Dopamine-crosslinked. Nano Energy 56:733–740

    Article  CAS  Google Scholar 

  46. Liu Z, Shi T, Tang Z, Sun B, Liao G (2016) Nanoscale 8:7017–7023

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 51272086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wuyou Fu or Zhihui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Li, Y., Feng, S. et al. Enhanced performance of planar perovskite solar cells using Ce-doped TiO2 as electron transport layer. J Mater Sci 55, 5681–5689 (2020). https://doi.org/10.1007/s10853-020-04409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04409-9

Navigation